

AES Core G2
Product Description

April, 2006

Page 1/11

Algotronix Ltd.
P.O. Box 23116
Edinburgh EH8 8YB
Phone: +44 131 556 9242
Fax: +44 870 052 5069
E-mail: cores@algotronix.com

URL: www.algotronix.com

AES Core

Features
• NIST validated implementation (Cert #347) of

FIPS 197 (November 2001) AES Encryption and
Decryption

• Supports all modes of AES defined in SP800-
38A: ECB, CBC, CFB1, CFB8, CFB128, OFB and
CTR.

• Supports 128, 192 and 256 bit keys

• Targets all modern FPGA families from Xilinx,
Actel and Altera.

• Compile as Encryptor, Decryptor or Encryp-
tor/Decryptor

• Supplied as easily customizable portable VHDL to
allow customers to conduct their own code review
in high-security applications. Comprehensive
compilation options to include only required fea-
tures and save area

• Supplied with comprehensive test bench
implementing all AESAVS tests plus additional
vectors in FIPS197 and Special Publication
SP800-38A.

Algorithm AES

Modes ECB, CBC, CFB, OFB,
CTR

Test Method NIST AESAVS

Clock Cycles 44 (AES 128, Encrypt)

Perform-
ance/Area

Tradeoff via compilation
options. See section 2.

Deliverables VHDL with Testbench.
optimizations for Xilinx,
Actel and Altera FPGAs.

Potential Applications
• Government/Military Communications

• Wireless Networks

• Internet Security: IPSec, SSL, TSL protocols

• Financial Security ANSI X9.53

• Gaming Machines

• Content Anti-Piracy (e.g. set top box)

• Proprietary Security applications

General Description
This is a complete validated implementation of AES: all standard modes of operation and key lengths are
supported. The core is developed in accordance with Federal Information Processing Standards Publication (FIPS
PUB 197) “Advanced Encryption Standard (AES)” and tested in accordance with the NIST document “The
Advanced Encryption Standard Algorithm Validation Suite (AESAVS)”, November 15, 2002. The modes of
operation are developed in accordance with the NIST document SP800-38A. The core was validated by a NIST
approved laboratory in March 2006 and received certificate number 347 from NIST.

 As well as supporting all standard modes of operation the core is designed for flexibility both at compile time and
during operation. An extensive set of compile time options are provided so that the user can save area by including
only those components of AES which are necessary to support their application. The core can be compiled for 128,

{ algotronix } - AES Core

Page 2/11

192 or 256 bit keys. For maximum flexibility the 192 bit implementation can select between 128 or 192 bit keys
during operation. Similarly, the 256 bit implementation can select between 256, 192 or 128 bit keys.

To support highly sensitive applications the Algotronix AES Core is supplied as portable VHDL allowing customers
to carry out an internal code review to convince ensure no ‘Trojan horse’ circuitry has been added to the core which
could compromise its security. As an example in a ‘chosen plaintext’ attack a core could be designed to
communicate key information in the ciphertext after receiving a ‘trigger’ set of plaintext. Such circuitry is almost
impossible to detect by applying test vectors to the pins of an IP core - which is the only method customers have for
checking cores supplied in ‘compiled’ formats such as device specific netlists. Providing source code also allows for
easy customization of the interface to the core (e.g. data bus widths) or performance tuning by increasing
parallelism at the expense of area.

The core has been simulated using the Active HDL simulation environment and implemented using Xilinx XST,
Altera Quartus II and Synplicity synthesis for Actel FPGAs. It has also been simulated using Modelsim XE.
Implementation directories from the FPGA vendor tools are supplied. The core implements all standardized modes
and key lengths of AES and can be compiled as an encryptor, decryptor or encryptor/decryptor according to the
application requirements. The FPGA implementations are optimized to take advantage of FPGA resources such as
RAM blocks.

The core is supplied with a comprehensive test bench implementing all the NIST Known Answer Tests, Monte Carlo
Tests, and the Multi-block Message tests.

Performance and Area
The core provides many options to allow the user to trade off area against throughput and latency so it is difficult to
provide a comprehensive set of performance figures here. The FPGA architecture and speed grade also has a
strong bearing on the results achieved. The purpose of this section is to give a reasonable overview of the achiev-
able performance to allow comparison with competitive products.

The figures below are for a 128 bit encryption core supporting the ECB mode only. The
KEYSCHEDULE_SHARES_SBOXES compilation option is used. The IMPLEMENT_SBOXES_IN_RAM compila-
tion option is used so the SBox logic is implemented in FPGA RAM blocks rather than CLBs. These figures are for a
‘press the button’ flow through the vendor tools with no timing or other implementation constraints specified. Clock
frequency could be increased by specifying constraints.

The first encryption in a block of chained CBC mode encryptions has an additional four cycle delay while the key
and initial plaintext is loaded.

When comparing with competitive implementations it is important to check the number of clock cycles required per
encryption as well as area and clock frequency. Unfortunately this information is not always provided on standard
FPGA vendor datasheets. Implementations which have significantly lower area will usually be using a narrower
datapath and therefore require more clock cycles per encryption e.g. a 16 bit datapath would require 88 clock cycles
per encryption.

 Slices RAM Blocks ECB Clock Cycles Clock Frequency

Xilinx (XC3S200-5,
ISE 8.1i)

321 3 44 97MHz

 Logic Elements

Altera (Cyclone
EP1C12F256C6,
Altera Quartus II,
5.1)

572 3 44 83.4MHz

{ algotronix } - AES Core

Page 3/11

Functional Description

As the designated replacement for DES the AES algorithm is the most commonly used symmetric cryptographic
algorithm in new systems. It finds use in all the main Internet security protocols as well as financial, government and
proprietary applications. The Algotronix core is aimed at providing sufficient performance with good area efficiency
for mainstream applications. A further design goal is that it should be straightforward for a customer to relate the
implementation source code back to the algorithm description in the standards.

In most practical applications of the AES core ease-of-use, area efficiency and compatibility with the feedback
mechanism of Cipher Block Chaining mode are more important considerations than raw performance. However, the
cores are designed for easy customization either by the customer or by Algotronix and it is straightforward to trade-
off area for increased parallelism if more performance is required.

Information on the AES Algorithm

AES Standards

The AES algorithm is standardized by the Computer Security Division, National Institute of Standards and
Technology (NIST), Gaithersburg MD. The relevant standard to this implementation is FIPS 197 which specifies the
AES algorithm. The NIST also provides a compliance testing standard: “The Advanced Encryption Standard
Algorithm Validation Suite (AESAVS)”, November 15, 2002. This document specifies compliance testing for AES. A
third NIST document SP-800A “Recommendation for Block Cipher Modes or Operation” specifies the standard
modes of operation for AES. This core implements these standards in their entirety, however compilation options
are provided so that only circuitry required for a particular application need be included.

These NIST documents can be downloaded free of charge from the NIST website () and are also supplied with the
core

The FIPS 197 standard document is easily downloaded and provides an excellent and concise description of the
processing involved in implementing AES and therefore this basic information on the structure of the AES algorithm
is not repeated here.

Textbook

Algotronix recommends the book “Applied Cryptography”, Bruce Schneier, Second Edition, John Wiley and Sons
ISBN 0-471-12845-7, as an introductory reference to cryptographic algorithms and their modes of operation.

Detailed Description

Core Interface

The interface to the core is specified as a VHDL package in the file aes_parameters_package.vhd. This package
along with the package aes_package.vhd must be included in your design using the VHDL ‘use’ statement. To-
gether these packages make available declarations of the various datatypes required and the component definition
of the AES core itself.

The VHDL component declaration AES core (encryptor) is shown below.

{ algotronix } - AES Core

Page 4/11

 -- definition of the aes unit

 component aes_cipher_wrapper

 port(clock : in std_logic;

 clear : in std_logic;

 reset : in std_logic;

 enable : in std_logic;

 mode : in crypt_mode;

 KeyLength : in key_length;

 do_encrypt : in std_logic;

 start : in std_logic;

 load_text : out std_logic;

 load_key : out std_logic;

 input_text : in word; -- word is std_logic_vector(31 downto 0)

 initial_value : in word;

 input_key : in word;

 output_valid : out std_logic;

 advanced_output_valid : out std_logic;

 output_text : out word);

end component;

The following table summarizes the functions of the various pins.

Pin Direc-
tion

Function

clock input Clock – active on rising edge

clear input Synchronous clear of controller state and most registers (Some shift regis-
ters do not use clear to allow a more area efficient implementation).

reset input Asynchronous reset – active high. Usually connected to FPGA global reset.

enable input Module clock enable – 0: module is inactive, 1: module runs

mode input Mode signal – specifies which mode of AES is to be implemented. See
also the omit_* compilation options in the section below. If compilation op-
tions have specified that logic for a particular mode should be omitted then
incorrect behaviour will result if that mode is selected.

KeyLength input Specifies the length of the key that is being used – 128, 192 or 256 bits.
See also the max_crypt_size compilation option. Only keys up to the size
specified in max_crypt_size may be specified e.g. if max_crypt_size gener-
ates hardware for a 192 bit key then KeyLength may be 128 or 192 bits but
not 256 bits.

Do_Encrypt input Specifies whether the core should operate in Encrypt or Decrypt mode.

{ algotronix } - AES Core

Page 5/11

This input is only significant if the compilation option cipher_function is set
to EncryptDecrypt i.e. hardware for both encryption and decryption has
been included.

Start input Starts a new encryption operation or block of operations in the chained
modes. The control signals Mode, KeyLength and Do_Encrypt are sampled
and the parameters fixed for the next operation. The key is assumed to
have changed and the keyschedule is recalculated (or loaded if the compi-
lation option User_Calculates_Keyschedule is active).

load_text output Load flag – high when input_text is being loaded

Load_key output Load flag – high when the key is being loaded

Output_Valid output Valid flag – high when output_text is valid.

Advanced_Output_Valid output High on the four clock cycles immediately preceding output_valid. This sig-
nal gives advanced warning that the core is about to input and output data
and can by external control circuitry to stop the core using the enable signal
until the system is ready to provide new input data and accept output data.

Input_Text[31:0] input Data input: current 32-bit word of the 128-bit plain text

Output_Text[31:0] output Data output: current 32-bit word of the 128-bit cipher text

initial_value [31:0] input current 32-bit word of the 128-bit initial value for the chained modes of op-
eration (ECB mode does not use the initial value).

Input_Key[31:0] input current 32-bit word of the key – it takes 4, 6 or 8 clock cycles to load a com-
plete key. If the compilation option User_Calculates_Keyschedule is speci-
fied the entire keyschedule is input through this signal.

The input_text, output_text and initial_value busses transfer 128 bit AES block values over 32 bit wide busses
(these 32 bit busses are declared as datatype word in the above code fragment) using four successive clock cycles.
The input_key bus transfers 128, 192 or 256 bits of key information over a 32 bit bus using 4, 6 or 8 clock cycles
respectively. Words are transferred in order starting with the most significant word.

Synchronising between the user design and the core is relatively straightforward. The user controls when the core
processing starts using the ‘start’ signal. When the core samples ‘start’ as being high on a rising edge of the clock it
prepares for a new chain of encryptions and on the following clock cycle starts to load key and plaintext data. When
the key length is 192 or 256 bits, an initial two or four clock cycles respectively are required to load key data before
the final four clock cycles in which both key and text data are loaded.

Once the initial data is loaded the core begins processing. The number of clock cycles required depends on the key
length. Four clock cycles before the core is ready to output results the signal advanced_output_valid is brought
high. The user design can use the enable signal to implement flow control if it is not ready to accept the output data
– bringing enable low will stop the core processing.

Assuming that enable is left high, four clock cycles later the core will start outputting the processing plaintext or ci-
phertext (depending on whether this is an encryption or decryption operation). Simultaneously, if this is a chained
operation it will load the next block of plaintext or ciphertext for processing.

The best way to get an understanding of the timing of the interface signals to the core is to simulate the core using
the testbench provided and examine the waveforms on the signals in the table above during operation in the mode
of the cipher you wish to use.

{ algotronix } - AES Core

Page 6/11

Parameterising the Core for Efficiency

The core supports a wide variety of compilation (generic) parameters which allow the user to configure it for area
efficiency making sure that no unnecessary circuitry is included. The parameterisable version of the core is de-
clared in the file aes_cipher.vhd. The compilation parameters are then specified in the file
aes_parameters_package and applied in the file aes_cipher_wrapper – the result is a fully parameterized AES core
with no generic parameters at the top level of the design hierarchy. The advantage of having a non-parameterised
cell at the top of the design hierarchy is that the top level cell of the ‘flat’ post-synthesis design has exactly the same
interface as the top level cell of the pre-synthesis design. This allows the same testbench to be used for both pre-
synthesis and post synthesis simulation.

The most expensive sub-units in area terms within the AES design are the substitution or S-boxes. In an encryp-
tor/decryptor there are three sets of S-boxes – S-boxes in the key-scheduler, the encryption data path and inverse
S-boxes in the decryption data path. Many of the compilation parameters are concerned with efficiently implement-
ing the S-boxes.

In AES the encryption and decryption operations are not identical. In the AES decryptor it is necessary to pre-
calculate a set of round-keys and store them in a large memory (44, 32 bit words for AES 128) before decryption
begins. In the encryptor it is possible to calculate the round keys on-line as they are required – eliminating the
memory and the start-up delay associated with pre-calculation.

If the key-schedule is pre-calculated then one can use the same set of S-boxes in the Key Schedule unit as the en-
cryption/decryption data path since they are not required at the same time. This is always a good option in a de-
cryptor design and is usually a good tradeoff in an encryptor/decryptor or encryptor design.

In FPGAs using a block RAM to implement the Sboxes is usually the most efficient approach. However, if the block
RAMs are required by other circuitry or if the FPGA does not have suitable block RAMs the S-boxes can be imple-
mented as logic gates.

The following compilation options are specified by editing constant definitions in the aes_parameters_package file.
This is the only file in the AES core release which will normally be edited by the user.

• Cipher_function - specifies whether an Encryptor, Decryptor or Encryptor/Decryptor is required.

• Max_Crypt_Size – specifies the maximum key length the core should implement. The user can select any
key length up to and including this using control signals. For example, if Max_Crypt_Size is aes256 then
the core would deal with 256, 192 and 128 bit keys.

• Implement_SBoxes_in_RAM – specifies that FPGA RAM blocks rather than logic gates should be used to
implement SBoxes and Inverse SBoxes. This is the most efficient option if RAM blocks are available after
mapping the remainder of the user design.

• Omit_ECB_Mode, Omit_CBC_Mode, Omit_OFB_Mode, Omit_CTR_Mode, Omit CFB1_Mode,
Omit_CFB8_Mode, Omit_CFB128_Mode - Used to request that logic to support cipher modes that will not
be required is omitted from the design. The CTR and CFB modes require quite large amounts of additional
logic.

• User_Calculates_Keyschedule – specifies that the Keyschedule datapath should be omitted. Rather than
providing a key the user will load a complete key schedule (i.e. all round keys) into the design. This can be
a useful way to save area if the user’s system has a microprocessor available to calculate the keyschedule
and the key changes relatively infrequently so the time taken to calculate the keyschedule is not an issue.

• Keyschedule_Shares_Sboxes – specifies that the same SBoxes are used for the encryption datapath and
the keyschedule unit. When this option is selected the encryption key schedule must be pre-calculated in
the same way as decryption keys causing additional latency when the key is changed.

• Target_Device – Specifies one of Xilinx, Altera, ActelProASIC, ActelProASIC3, ActelAxcelerator FPGA
families as the target device.

{ algotronix } - AES Core

Page 7/11

• Force_output_low_until_valid – When true the core will hold the output low at all times when valid output
data is not present. When this signal is false the circuitry to hold the output zero will be omitted, saving
some area. In this case the core output ‘output_text’ will show the values at intermediate rounds of the ci-
pher as well as the final round. This data is not fully encrypted and, if available to an attacker, could com-
promise security of both the key and data. Therefore, this parameter should only be set to false if the user’s
design which contains the core can guarantee that an attacker will not be able to monitor the core output di-
rectly.

{ algotronix } - AES Core

Page 8/11

Test bench Information
The main component of the test bench is the test vectors specified in the NIST AESAVS and SP800-38A
documents. These include Known Answer Tests (KAT) and Monte Carlo Tests (MCT).

The NIST Known Answer Tests (KAT) provide comprehensive coverage of all components of the AES core by
applying a set of plaintext and keys to the core and checking that the correct ciphertext is generated (or in the case
of the decoder supplying ciphertext and checking the plaintext). The various KAT tests are intended to stress
different elements of the implementation. The KAT tests run quickly and are good diagnostics after any changes to
the core Electronic Code Book function.

The Monte Carlo Tests (MCT) run the cipher iteratively and are very computation intensive. NIST specifies a
method of iteratively running the AES algorithm starting from a supplied initial set of plaintext, initial value and key
and automatically generating new test inputs based on the outputs of the previous test. Unlike the KAT tests NIST
does not provide a complete set of Known Answers. When an AES implementation is sent for qualification by a
NIST approved laboratory the starting condition of the MCT tests is not known in advance. NIST does provide some
cut-down example vectors to check the basic operation of the MCT test implementation. The Monte Carlo Tests run
a very large number of these tests – each test involves 100,000 encryption/decryption operations and there are
several tests for each mode of the cipher. PC based simulators are unable to run complete MCT tests in a
reasonable amount of time. The cut down versions still run tens of thousands of encryptions and provide a very
high level of confidence in the core.

The Algotronix testbench runs in one of two basic modes:

• In REGRESSION mode the testbench automatically compares the results of test operations against known
answers provided in the test file. These files have the extension .gld for ‘golden’ because they contain
known good results. Most customers will only require this mode of operation.

• In QUALIFICATION mode the testbench processes vector files with extension .req for ‘request’. These files
do not contain correct answer data. In this mode the testbench generates output files with extension ‘res’
for ‘result’. The result files would be required if the AES core was submitted to a NIST approved laboratory
for qualification.

To use the testbench in qualification mode the user needs to purchase a set of test vectors from a NIST approved
test laboratory. This package is then unzipped to form a directory tree in a convenient location. VHDL has very
limited file handling abilities compared to a normal programming language and so some user intervention is required
to set the qualification vectors up for the testbench. Firstly, the string constant ‘qual_test_directory’ in the file
aes_testbench.vhd must be set to point at the vectors obtained from the test laboratory. Secondly, the user must
provide a list of all the qualification tests in the file ‘test_list.txt’ within this directory. The testbench will read the
test_list.txt file and run all the specified request files and produce the ‘.res’ files for sending to the test laboratory.
Algotronix recommends that the user contacts us for support if they wish to use the qualification features of the
testbench.

Regression Mode

In regression mode the test vectors are stored in the subdirectory ‘kat’ of the design. The testbench reads the file
‘test_list.txt’ in the KAT directory to determine which tests to apply. The default list does not include the Monte Carlo
tests to keep simulation runtime relatively short. The regression mode file names have a standard format (e.g.
KATCBC-AESAVS-192.gld), which is explained below.

The first three letters are KAT or MCT and indicate whether this is a Known Answer Test or a Monte Carlo Test.

Following the KAT or MCT indication the next block of letters specify the mode of the cipher which is being tested:
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback with 1, 8 and 128 bit variants (CFB1,
CFB8 and CFB 128), Output Feedback (OFB) and Counter (CTR).

The next block of letters specifies the source of the test vectors:

• AESAVS – the NIST AESAVS document

• SP800 – the NIST SP800 document on modes of use of the cipher.

• SELECT – the original Rijndael submission to the NIST selection procedure (when candidate algorithms
were submitted for selection as the new Advanced Encryption Standard).

{ algotronix } - AES Core

Page 9/11

The final three numbers in the file name specify the AES cipher key length that is to be tested – 128, 192 or 256 bits.

The testbench can determine from the filename the key length and mode of AES that is being tested, it then
compares this against the compilation options for the core and only applies the test if appropriate (e.g. CTR tests
would not be run against a core compiled for ECB only). Only the base case (e.g. KATCBC-SP800 is specified in
the test_list.txt file – the testbench will run the tests at all key lengths supported by the core’s compilation options
(e.g. a core compiled for 256 bit keys will support 128, 192 and 256 bit keys but a 128 bit core only supports 128 bit
keys). Normally the best choice is to specify all the tests except the MCT tests in the test_list.txt file and allow the
testbench to select the appropriate ones based on the compilation parameters. The MCT tests make the run time
very much longer but are highly unlikely to detect any problems not found by the simpler tests.

The KATECBCipher test uses the worked example from the FIPS197 standard and is only available with a 128 bit
key, this will result warning messages when it is included in the test_list.txt file.

Post Layout Simulation

Some FPGAs require specific support from the testbench for initialization. For example the Actel FPGAs require a
period after power on to initialize the RAM blocks used to implement SBoxes. In post implementation simulations
the Xilinx FPGAs require some dead time after power on for the chip initialization to complete. For this reason you
may see that there is a delay between the start of simulation time and the point at which vectors start to be applied
to the core.

In post-implementation simulations it is quite likely that the delay on the implemented clock net will be longer than
the delay between the chip pins and the first register for one or more data signals. At the system level the clock de-
lay would usually be cancelled with a phase locked loop but this is not provided in the simulation. Instead a small
delay is added by the testbench to all data signals to ensure that changes in data will not occur on chip before the
clock edge that caused them.

The timing parameters aes_clock_high, aes_clock_low and aes_data_hold are set in the aes_parameters package
to reasonable defaults. If your simulation encounters set up and hold problems post layout you may need to vary
these parameters.

Limitations on NIST Supplied MCT tests

The Known Answer Data for Monte Carlo Testing supplied by NIST in the AESAVS document only includes results
from the first three blocks of encryptions (MCT testing for qualification is specified to run 100 blocks of encryptions).
Nevertheless, since each block requires 1,000 chained encryption operations and the entire block would fail if any of
these gave an incorrect response this is still a strong proof of correctness. It also has an acceptable run time.

NIST does not specify any known answers for MCT testing in decrypt mode. In ECB mode the MCT test is symmet-
rical and one can make use of the encryption vectors in the opposite direction (i.e. start with the ciphertext and ob-
tain the plaintext) but MCT in the chained modes of operation is not symmetrical.

Although it may look that the MCT tests have been cut back it is important to realize that the core of the cipher is the
same in all operating modes. The testbench contains files for many different operating modes and key lengths each
of which will test the basic ECB cipher logic. Since the AES algorithm is designed to amplify the effects of a single
bit change (i.e. changing one bit in the input plaintext or key results in a completely unrelated ciphertext) in practice
any problems in the encryption datapath are detected very quickly.

Customization Service
Algotronix can offer a cost effective customization service for this core in order to tune the implementation for easy
integration into a larger system. It is also possible to produce variants with significantly higher performance at the
expense of increased area and to create optimized variants of the core targeted at particular FPGA products.

{ algotronix } - AES Core

Page 10/11

Copyright © 2002-2006 Algotronix Ltd., All Rights Reserved.

Algotronix is a registered trademark of Algotronix Ltd. in the United States and United Kingdom and a trademark of
Algotronix Ltd. in other countries.

The supply of the product described in this document is the subject of a separate license agreement with
Algotronix Ltd. which defines the legal terms and conditions under which the product is supplied. This product
description does not constitute an offer for sale, a warranty of any aspects of the product described or a license
under the intellectual property rights of Algotronix or others. Algotronix products are continuously being improved
and are subject to change without notice. Algotronix products are supplied ‘as is’ without further warranties,
including warranties as to merchantability or suitability for a given purpose. Algotronix products are not intended for
use in safety critical applications.

This cryptographic product is subject to export control. It is freely available within the European Union and is
exported to the following countries: Australia, Canada, Japan, New Zealand, Norway, Switzerland and the United
States under Community General Export Authorisation EU001. Algotronix cannot supply the product to customers
located outside these countries without an export licence.

Note: the export control restrictions are applied by the United Kingdom government to the parameterisable core
design supplied as source code by Algotronix, not products using the core within an FPGA bitstream. The
Algotronix source code product allows customers to modify the cryptographic function, however once the core is
incorporated in an FPGA bitstream the cryptographic function is usually fixed. Customers should not assume that
products they design using the core will be subject to export control and should contact their own government to
determine if export control regulations apply.

Algotronix Ltd.
P.O. Box 23116
Edinburgh EH8 8YB
Phone: +44 131 556 9242
Fax: +44 131 556 9247
E-mail: cores@algotronix.com

URL: www.algotronix.com

{ algotronix } - AES Core

Page 11/11

Document Revision Date

AES-CORE-PD 1.0 February 2002

AES-CORE-PD 2.0 March 2003

AES-CORE-PD 2.1 March 2004

AES-CORE-PD 3.0 November 2004

AES-CORE-PD 3.1 March 2005

AES-CORE-G2-PD 1.0 January 2006

AES-CORE-G2-PD 1.1 April 2006

