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(57) ABSTRACT

A field programmable gate array has security configuration
features to prevent monitoring of the configuration data for
the field programmable gate array. The configuration data is
encrypted by a security circuit of the field programmable
gate array using a security key. This encrypted configuration
data is stored in an external nonvolatile memory. To con-
figure the field programmable gate array, the encrypted
configuration data is decrypted by the security circuit of the
field programmable gate array using the security key stored
in the artwork of the field programmable gate array. The
secret key consists of a number of bits of key information
that are embedded within the photomasks used in manufac-
ture the FPGA chip.
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METHOD OF USING A MASK PROGRAMMED
KEY TO SECURELY CONFIGURE A FIELD
PROGRAMMABLE GATE ARRAY

[0001] This application claims priority to UK patent appli-
cation GB 0002829.0, filed Feb. 9, 2000 and U.S. provi-
sional patent application 60/181,118, filed Feb. 8, 2000, and
is a continuation-in-part of U.S. patent application Ser. No.
09/747,759, filed Dec. 21, 2000, which are incorporated by
reference along with all references cited in this application.

BACKGROUND OF THE INVENTION

[0002] This invention relates to integrated circuits such as
field programmable gate arrays (FPGAs) which contain an
on-chip volatile program memory which must be loaded
from an off-chip nonvolatile memory when power is applied
before normal operation of the device can commence.

[0003] Field programmable gate arrays (FPGAs) consti-
tute a commercially important class of integrated circuit
which are programmed by the user to implement a desired
logic function. This user programmability is an important
advantage of FPGAs over conventional mask programmed
application specific integrated circuits (ASICs) since it
reduces risk and time to market.

[0004] The function of the FPGA is determined by con-
figuration information stored on the chip. Several technolo-
gies have been used to implement the configuration store:
most notably static random access memory (SRAM), anti-
fuse and flash erasable programmable read only memory
(EPROM). The SRAM programmed FPGAs have domi-
nated in the marketplace since they have consistently offered
higher density and operating speed than devices using the
other control store technologies. SRAM devices can be
implemented on standard complementary metal oxide semi-
conductor (CMOS) process technology whereas antifuse
and Flash EPROM technologies require extra processing
steps. SRAM devices are normally built on process tech-
nology a generation ahead of that used in the other devices.
For example, today the most advanced SRAM programmed
FPGAs are available implemented on 0.18 micron technol-
ogy whereas the most advanced nonvolatile FPGAs are on
0.25 micron technology. The smaller transistors available on
the advanced processes provide a speed and density advan-
tage to SRAM programmed FPGAs. Additional details of
the operation of FPGAs and their control memory are given
in standard textbooks including John V. Oldfield and Rich-
ard C. Dorf Field Programmable Gate Arrays, published by
Wiley-Interscience in 1995.

[0005] Unlike antifuse and FLASH EPROM which main-
tain their state after power is turned off, SRAM is a volatile
memory which loses all information on power off. There-
fore, SRAM programmed FPGAs must have a configuration
bitstream loaded into them immediately after power is
applied: normally this configuration information comes
from a serial EPROM. A serial EPROM is a small, non-
volatile memory device which is often placed adjacent to the
FPGA on the printed circuit board and which is connected to
it by a small number of wires. The programming information
may also come from a parallel access EPROM or other type
of memory or a microprocessor according to the require-
ments of the system containing the FPGA.

[0006] A shortcoming of FPGAs, especially SRAM pro-
grammed FPGAs, is a lack of security of the user’s design
because the configuration bitstreams may be monitored as
they are being input into the FPGA. This security issue is
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one of the few remaining advantages of FPGAs based on
nonvolatile memory over SRAM programmed FPGAs. It is
very difficult to “clone” a product containing a mask pro-
grammed ASIC or one of the nonvolatile FPGAs. Cloning an
ASIC involves determining the patterning information on
each mask layer which requires specialist equipment and a
significant amount of time. It is also difficult to copy
configuration information loaded into the nonvolatile FPGA
technologies after their “security fuses” have been blown—
thus these devices are attractive to customers who have
concerns about their design being pirated or reverse engi-
neered. Vendors of FPGAs which use nonvolatile program-
ming memory often refer to the security advantages of their
technology over SRAM programmed parts in their market-
ing literature. As an example, “Protecting Your Intellectual
Property from the Pirates” a presentation at DesignCon 98
by Ken Hodor, Product Marketing Manager at Actel Cor-
poration gives the view of the major vendor of antifuse
FPGAs on the relative security of antifuse, FLASH and
SRAM based FPGAs.

[0007] This security problem of SRAM FPGAs has been
well known in the industry for at least 10 years and to date
no solution attractive enough to be incorporated in a com-
mercial SRAM FPGA has been found. Some users of SRAM
FPGAs have implemented a battery back up system which
keeps the FPGA powered on in order to preserve its con-
figuration memory contents even when the system contain-
ing the FPGA is powered off. The FPGA bitstream is loaded
before the equipment containing it is shipped to the end user
preventing unauthorized access to the bitstream information.
Present day FPGAs have a relatively high power consump-
tion even when the user logic is not operating: which limits
the life span of the battery back up. If power is lost for even
a fraction of a second the system the FPGA control memory
will no longer be valid and the system will cease to function.
This raises concerns about the reliability of a system which
uses this technique. Thus, this prior art approach to protect-
ing FPGA bitstreams is only applicable to a small fraction of
FPGA applications.

[0008] As can be appreciated, there is a need for improved
techniques and circuitry for secure configuration of FPGAs.

SUMMARY OF THE INVENTION

[0009] The invention is a field programmable gate array
with security configuration features to prevent monitoring of
the configuration data for the field programmable gate array.
The configuration data is encrypted by a security circuit of
the field programmable gate array using a security key. This
encrypted configuration data is stored in an external non-
volatile memory. To configure the field programmable gate
array, the encrypted configuration data is decrypted by the
security circuit of the field programmable gate array using
the security key stored in the artwork of the field program-
mable gate array. The secret key consists of a number of bits
of key information that are embedded within the photomasks
used in manufacture the FPGA chip.

[0010] Design piracy in which a competitor makes illegal
cloned products by copying FPGA bitstream memories is
normally of concern because of loss of revenue rather than
because it is essential to prevent any unauthorized products
for security reasons. Therefore, it can be combated by
techniques which make it uneconomic rather than impos-
sible to manufacture cloned products. FPGAs can be manu-
factured with one of two or more secret keys (e.g., key A and
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key B) embedded in the artwork of the design. After
manufacturing the FPGA chips manufactured with the
masks encoding key A are mixed together with those manu-
factured using the masks encoding key B and the packages
are marked identically. A customer who bought FPGAs has
no way of telling which secret key was present on a
particular chip. If the customer was a pirate who had a secure
bitstream that he had copied illegally and wished to use in
cloned equipment he would have a problem: since the
bitstream can only be decrypted by an FPGA with the
matching secret key only 50% of the FPGAs that he bought
would actually work with his copied bitstream. This would
place him in a considerable economic disadvantage com-
pared with the creator of the design who can load an
unencrypted bitstream into any FPGA and have it generate
a secure bitstream using whatever key is implanted on chip.

[0011] In an embodiment, the invention is a method
including fabricating a first group of FPGA integrated cir-
cuits with a first secret key embedded by way of a first mask
set. The method includes fabricating a second group of
FPGA integrated circuits with a second secret key embedded
by way of a second mask set. The first group of FPGA
integrated circuit provides the same logical functionality as
the second group of FPGA integrated circuits. In a specific
embodiment, the only difference between the first group of
FPGAs and second group of FPGAs is having a different
secret key or security key. A first secure bitstream will
configure properly user-configurable logic of the first group
of FPGA integrated circuits, but not the second group of
FPGA integrated circuits.

[0012] In an embodiment, the first group of FPGA inte-
grated circuits with the first secret key may be assigned to a
first geographic area and the second group of FPGA inte-
grated circuits with the second secret key may be assigned
to a second geographic area. In another embodiment, the
first group of FPGA integrated circuits with the first secret
key are fabricated in a first time period and the second group
of FPGA integrated circuits with the second secret key are
fabricated in a second time period, different from the first
time period. The first time period may be about the same
duration as the second time period. In a further embodiment,
the first group of FPGA integrated circuits with the first
secret key are assigned to a first customer and the second
group of FPGA integrated circuits with the second secret key
are assigned to a second customer.

[0013] In an embodiment, only one mask differs between
the first and second mask sets. The one mask that differs may
be a contact mask. In another embodiment, there are random
differences between artwork of the first and second group of
FPGA integrated circuits in addition to the different embed-
ded secret keys.

[0014] The method further includes loading an unen-
crypted bitstream into one of the first group of FPGA
integrated circuits to generate a secure bitstream using the
first secret key. The first and second secret keys may be
presented on wires of the respective group of FPGA inte-
grated circuits for only a limited duration. The first secret
key may be embedded by setting an initial state of a
selection of memory cells in a device configuration memory
of the FPGA integrated circuit. In an embodiment, the first
secret key is extracted by using a CRC algorithm to compute
a checksum of the initial state of the device configuration
memory. Alternatively, the first secret key may be embedded
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by changes to a relatively large block of logic (e.g., logic like
configurable logic, AND gates, OR gates, flip-flops, and
look-up tables) in the first plurality of FPGA integrated
circuits and its value extracted using a CRC algorithm.

[0015] In another embodiment, the invention is a method
including embedding a first secret key within the artwork of
an FPGA integrated circuit. A user-defined second secret key
is stored within an encrypted FPGA bitstream, which will be
stored in an external nonvolatile memory accessible by the
FPGA. The user-defined second secret key is decrypted
using the first secret key. A secure network link is set up
between the FPGA and a server using the user-defined
second secret key. Further, the method may include down-
loading an FPGA bitstream using the secure network link.
The downloaded FPGA bitstream is encrypted using the first
secret key. The encrypted downloaded bitstream is stored in
the external memory. The secure network link may be
created using a standard internet security protocol. The
FPGA is configured using the encrypted downloaded bit-
stream stored in the external memory.

[0016] In another embodiment, the invention is a method
including storing a first secret key on an FPGA chip. The
FPGA calculates a message authentication code (MAC)
corresponding to a user design. The message authentication
code is stored with bitstream information in a nonvolatile
memory. Furthermore, copyright messages may be stored
with the bitstream information. Unauthorized alterations to
the bitstream may be detected using the message authenti-
cation code. Bitstreams which have been altered are pre-
vented from being used to configure an FPGA.

[0017] The message authentication code along with cor-
responding identification information for a product contain-
ing the FPGA may be recorded. The message authentication
code stored in the nonvolatile memory of a product con-
taining a pirated FPGA design is examined. This will enable
determining of the identity of the customer to whom the
pirated FPGA was originally supplied using a record of
MAG:s and corresponding product identification.

[0018] A feature of this invention is to provide a crypto-
graphic security protocol which prevents unauthorized third
parties from reverse engineering FPGA bitstreams or ben-
efiting economically from manufacturing clone products
containing pirate copies of FPGA bitstreams.

[0019] Another feature of this invention is to provide this
security without requiring on chip nonvolatile memory cells
or individual customization steps for every chip in the
manufacturing process.

[0020] Another feature of this invention is to prevent
pirates from removing copyright messages from cloned
designs and to allow FPGA users to trace the individual
product unit from which a design has been cloned.

[0021] A further feature of this invention is to provide an
FPGA implemented with a standard processing flow that can
securely store cryptographic keys needed to support a pro-
tocol for securely downloading programming information
over a communications network into an external memory.

[0022] This invention further provides security without
compromising the ease of manufacture of the SRAM
FPGAs, without complicating the Computer Aided Design
tools for the SRAM FPGAs, and without removing the
user’s ability to reprogram the SRAM FPGAs many times.

[0023] Further features and advantages of the invention
will become apparent from a consideration of the drawings
and ensuing description.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0024] FIG. 1 shows a prior-art structure for configuring
an FPGA from an external memory.

[0025] FIG. 2 shows a prior art structure for configuring
a microcontroller with an-chip program and data memory
from an external memory.

[0026] FIG. 3 shows a prior-art structure for configuring
a Configurable System on Chip integrated circuit from an
external memory.

[0027] FIG. 4 shows a prior-art structure for securely
programming an FPGA.

[0028] FIG. 5 shows a secure FPGA according to this
invention.

[0029] FIG. 6 shows a secure FPGA which can download
configuration data from a communications network.

[0030] FIG. 7 shows a secure FPGA in which the key
information is encoded into the device mask set and distrib-
uted throughout the configuration memory.

DETAILED DESCRIPTION

[0031] FIG. 1 shows a prior art SRAM programmed
FPGA 10 connected to a memory chip 30 via a set of signal
traces 20 on a printed circuit board. Configuration circuitry
12 on the FPGA loads programming data from memory 30
into on chip configuration memory 14. Resources on the
FPGA not related to programming (such as the logic gates
and routing wires which implement the user design) are not
shown in this or subsequent illustrations for reasons of
clarity but are well understood and are described in manu-
facturer’s literature such as Xilinx Inc. “Virtex 2.5 V Field
Programmable Gate Arrays,” Advanced Product Specifica-
tion, 1998 and the Oldfield and Dorf textbook mentioned
above. Set of signals 20 will normally include a data signal
to transfer configuration information, a clock signal to
synchronize the transfer and several control signals to
specify a particular mode of transfer (for example when a
sequence of FPGAs can be daisy chained to a single source
of programming data). The exact number and function of
programming signals 20 varies from manufacturer to manu-
facturer and product line to product line. The specific signals
for a market leading FPGA product are documented in the
Xilinx literature cited above.

[0032] Programming signals 20 can be monitored by a
malicious party who can then make a copy of the bitstream
transferred across them. This could be done, for example, by
attaching a probe or probes from a logic analyzer to those
pins of FPGA 10 concerned with the programming interface.

[0033] FIG. 2 shows a prior art microcontroller 40 which
contains configuration circuitry 12 to load initial values for
an on chip memory block 42 from a serial EPROM on power
up. On chip memory 42 may contain a program to be
executed by the microcontroller or data tables for use by the
microcontroller. Depending on the microcontroller architec-
ture it might be convenient for memory 42 to be composed
of several smaller memories: for example there may be
separate memories for program code and data. The function
of configuration circuitry 42 may be wholly or partly imple-
mented by software running on the microcontroller and
stored in an on chip mask programmed Read Only Memory
(ROM). The security problem is the same as that faced by
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the FPGA: an attacker can copy the programming informa-
tion as it passes between the external memory and the
microcontroller on chip SRAM memory.

[0034] Recently, Configurable System on Chip (CSoC)
devices have become available commercially which contain
both a microcontroller with a volatile on-chip program
memory and a block of SRAM programmed logic: both the
microcontroller program memory and the programmable
logic configuration memory must be loaded from an external
nonvolatile memory on power on. Details of one such device
are given in Triscend Corporation, “Triscend E5 Config-
urable Processor Family,” Product Description (Preview),
July 1999. The Triscend CSoC can be programmed from a
serial EPROM in the same way as an FPGA but also offers
a convenient additional feature illustrated in FIG. 3. Con-
figuration data can be downloaded to the CSoC 50 through
an industry standard Joint Test Action Group (JTAG) inter-
face and the CSoC itself can then program an In System
Programmable (ISP) external memory 32 with the data. The
external memory could be an SRAM but would normally be
a serial or parallel EPROM or Flash EPROM. The CSoC
implements the programming algorithm for the nonvolatile
memory: the on chip-microcontroller allows CSoC devices
to implement relatively complex configuration algorithms in
software. This feature simplifies manufacturing a system
containing a CSoC since the ISP memory chip 32 need not
be programmed prior to installation on the Printed Circuit
Board (PCB).

[0035] There are two main ways in which a malicious
party might make use of captured bitstream information. The
more serious threat, at the present time, is that a pirate may
simply copy the bitstream information and use it unchanged
to make unauthorized copies or clones of the product
containing the FPGA without any understanding of how the
FPGA implements its function. The second threat is that the
attacker might reverse engineer the design being loaded into
the FPGA from bitstream information. Reverse engineering
an FPGA design would require significant effort because
automated tools for extracting design information from the
bitstream are not generally available. Should such tools be
created and distributed in the future reverse engineering
would become a very serious threat.

[0036] This security issue is one of the few remaining
advantages of FPGAs based on nonvolatile memory over
SRAM programmed FPGAs. It is very difficult to clone a
product containing a mask programmed ASIC or one of the
nonvolatile FPGAs. Cloning an ASIC involves determining
the patterning information on each mask layer which
requires specialist equipment and a significant amount of
time. It is also difficult to copy configuration information
loaded into the nonvolatile FPGA technologies after their
security fuses have been blown—thus these devices are
attractive to customers who have concerns about their design
being pirated or reverse engineered. Vendors of FPGAs
which use nonvolatile programming memory often refer to
the security advantages of their technology over SRAM
programmed parts in their marketing literature. As an
example, “Protecting Your Intellectual Property from the
Pirates” a presentation at DesignCon 98 by Ken Hodor,
Product Marketing Manager at Actel Corporation gives the
view of the major vendor of antifuse FPGAs on the relative
security of antifuse, FLASH and SRAM based FPGAs.

[0037] This security problem of SRAM FPGAs has been
well known in the industry for at least 10 years and to date
no solution attractive enough to be incorporated in a com-
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mercial SRAM FPGA has been found. Some users of SRAM
FPGAs have implemented a battery back up system which
keeps the FPGA powered on in order to preserve its con-
figuration memory contents even when the system contain-
ing the FPGA is powered off. The FPGA bitstream is loaded
before the equipment containing it is shipped to the end user
preventing unauthorized access to the bitstream information.
Present day FPGAs have a relatively high power consump-
tion even when the user logic is not operating: which limits
the life span of the battery back up. If power is lost for even
a fraction of a second the system the FPGA control memory
will no longer be valid and the system will cease to function.
This raises concerns about the reliability of a system which
uses this technique. Thus, this prior art approach to protect-
ing FPGA bitstreams is only applicable to a small fraction of
FPGA applications.

[0038] There are two main problems which have up till
now prevented the industry from introducing security to
SRAM programmed FPGAs.

[0039] Firstly, in order to provide security against pirated
bitstreams prior art techniques have required a nonvolatile
memory on the FPGA chip or chip by chip customization
during manufacture. This is, in itself, a considerable draw-
back for the FPGA manufacturer since it is highly desirable
to use a completely standard manufacturing flow.

[0040] A second problem with implementing a unique
identifier on every FPGA and using this identifier to prevent
a bitstream for one FPGA from successfully configuring a
second is that it seriously complicates the manufacturing of
equipment containing the FPGAs. It is necessary to create a
different bitstream for each FPGA based on its unique
identifier: therefore the CAD tools must keep track of the
unique identifier of the device to be configured. This can
cause serious inconvenience to the user and manufacturer of
the FPGA.

[0041] FIG. 4 shows an FPGA containing security cir-
cuitry 64 and an on-chip nonvolatile ID memory 62. Secu-
rity circuitry 64 is coupled between off-chip non volatile
storage 30 and configuration circuitry 12 and is also coupled
to the nonvolatile ID memory 62. The device manufacturer
installs a unique key in the ID memory at the time of
manufacture and provides this key to the customer who
purchases the FPGA. The customer can then use this key to
create a security enhanced encrypted bitstream for this
particular FPGA and program this bitstream into serial
EPROM. When configuration data is loaded into the FPGA
security circuitry decrypts and verifies it using the key data
in ID memory 62. In this case a malicious party who copied
the bitstream passing between the FPGA and microcontrol-
ler would not be able to use this information to make a pirate
copy of the user’s equipment (since the secure FPGA
bitstream would only configure the particular FPGA it was
generated for). If the security algorithm involved encrypting
the bitstream it would also be impossible or very difficult for
the malicious party to reverse engineer the customer design.

[0042] This form of bitstream security causes inconve-
nience to both the FPGA manufacturer and customers. The
manufacturer faces the following problems:

[0043] 1. The FPGAs now require a customization
stage after manufacturing to individualize the ID
memory. This may involve, for example, cutting
metal traces with a laser, or programming on chip
antifuses or floating gate memory cells.
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[0044] 2. After customization the chips require a
customized programming stream. This complicates
testing since it is no longer possible to use identical
vectors for each chip.

[0045] 3. A security system must be put in place in
the manufacturer’s facility to protect the identifiers
being installed into the chips.

[0046] 4. The manufacturer must have a secure deliv-
ery method for supplying the secret identifiers to the
customers who purchased the FPGAs in an easy to
use manner. [t must also be easy for the customer to
match the identifiers supplied with the particular
device being programmed in an automated manufac-
turing environment.

[0047] The customer also faces additional problems:

[0048] 1. The customer must provide a secure envi-
ronment for handling and storing the device IDs.

[0049] 2. The customer must have a database or other
system which allows them to find the correct ID for
a given chip each time it is to be reprogrammed and
supply the ID to the bitstream generation computer
aided design (CAD) program. This will be of par-
ticular concern in the development process or when
making improvements or corrections to products in
the field.

[0050] 3. It is not possible to batch program many
serial EPROMs with a common configuration prior
to assembly onto the printed circuit board. The fact
that each serial EPROM must contain a different
configuration thus complicates equipment manufac-
turing.

[0051] 4. The customer must trust the FPGA manu-
facturer since the manufacturer has access to the ID
information and could, in theory, decrypt the bit-
stream for any customer design.

[0052] Tt can be seen that keeping the device IDs secure is
a significant practical problem which would cause consid-
erable inconvenience to FPGA manufacturers and their
customers. The security infrastructure makes it harder to
make use of one of the benefits of SRAM based FPGAs:
their ability to be reprogrammed many times. Standard
FPGAs with no bitstream security do not require tracking of
individual chip ID codes in order to create a usable bit-
stream. The fact that the device IDs must be stored on
computer systems at both the FPGA manufacturer and
customer and kept available in case reprogramming is
required potentially compromises security by providing
opportunities for unauthorized access to key information.

[0053] Although the above discussion has focussed on
FPGAs, since these are the most commercially important
class of integrated circuit which make use of a volatile on
chip program memory it is applicable to any integrated
circuit which must load an on chip volatile program memory
from an off-chip nonvolatile memory. This might include
other forms of programmable logic such as Complex Pro-
grammable Logic Devices, routing chips such as Field
Programmable Interconnect Components (FPICs) or micro-
controllers which use a block of on chip SRAM to store
program code. It would also be applicable to hybrid com-
ponents like the CSoC mentioned above which had more
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than one class of SRAM programmed circuit: for example
chips which contain a microcontroller and an SRAM pro-
grammed FPGA. It would be obvious to one skilled in the
art that the method of securely configuring an FPGA
described here could equally well be applied to these and
many other classes of component which use a volatile on
chip program memory and although the term FPGA is used
throughout for convenience it is not intended that the
disclosure or its claims are limited to FPGAs.

[0054] FIG. 5 shows an improved secure FPGA 70 dis-
closed in the applicant’s application GB9930145.9 and U .S.
provisional patent application 60/181,118, filed Feb. 8, 2000
which provide the security of the FPGA 60 in FIG. 4 without
compromising ease of use. The present application is related
to the applicant’s application GB 9930145.9 “Method and
Apparatus for Secure Configuration of a Field Program-
mable Gate Array.” That application describes an improved
method of securing the FPGA configuration which does not
require the provision of nonvolatile memory on the FPGA.
Although the technique disclosed in this application is
particularly suited to being used in conjunction with the
technique disclosed in this earlier application, it can also be
used with many other techniques for securing the external
program memory of an FPGA, microcontroller, or similar
device.

[0055] In FIG. 5, for reasons of clarity resources on the
FPGA not related to programming are not shown. Random
number generator 72 is coupled to the security circuitry 64
and can be used to generate a random ID code. Such a code
should be at least 40 bits long and would preferably be
between 100 and 200 bits. The ID code is acts as a
cryptographic key and the normal considerations applicable
to choosing the length of a cryptographic key would apply.
As compute power increases in the future longer keys
lengths may be required. With a sufficiently long ID code
and a high quality random number generator it is extremely
unlikely that two FPGAs would generate the same ID.
Security circuitry 64 can load the ID code into the device ID
register 62 and it can also read the ID code from the register
when required. The device ID register is nonvolatile and its
contents are preserved when the power is removed from the
FPGA. Only the security circuitry 64 can access the output
of the ID register: the value stored in the ID register is never
available off-chip. Security circuitry 64 is also coupled to the
off-chip nonvolatile ISP memory 32 and the configuration
circuitry 12. Security circuitry 64 and configuration circuitry
12 process data coming from the off-chip memory prior to
writing it to the on-chip memory in the same way as the
system of FIG. 4. Additionally, in the improved secure
FPGA 70, security circuitry 64 and configuration circuitry
12 can also process data read out of on chip configuration
memory 14 encrypt it and write it to the off-chip in-system
programmable memory 32 through signals 20. This encryp-
tion can use the ID value stored in the ID register as a key.
Status Register 74 is provided in a preferred embodiment as
a small nonvolatile memory for use by the security circuitry
to store the configuration status of the device while power is
not applied, this allows extra flexibility in device configu-
ration.

[0056] To appreciate the benefit of the structure presented
in FIG. 5 it is necessary to consider the various stages in the
life of an SRAM FPGA chip. As an illustration we will
assume that the FPGA chip is sold to a customer in the
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computer networking industry who uses it in an Internet
Protocol (IP) router product. This example is provided only
to make the concepts being discussed more concrete, the
invention is not limited to any particular application area of
FPGA chips.

[0057] 1. Manufacture. When it leaves the manufacturer’s
premises the FPGA is completely functional but does not
contain any kind of proprietary design. Thus, there is no
need to be concerned that bitstream information might be
copied or pirated at this stage.

[0058] 2. Customer Programming. The FPGA customer
installs the FPGA chip in equipment which is to be supplied
to its own customers (the end users of the FPGA). For
example, in this case the FPGA chip might be installed on
a printed circuit board which forms part of an IP router. This
customer must also develop a proprietary design to config-
ure the FPGA to implement the functions required by the IP
router and store the bitstream (created using computer aided
design (CAD) tools supplied by the FPGA manufacturer) in
a nonvolatile memory within the system. It is this bitstream
information which must be protected from piracy or reverse
engineering.

[0059] 3. End User. The FPGA customer supplies their IP
router product to an end user. After it leaves the FPGA
customer’s premises the equipment containing the FPGA
may fall into the hands of a malicious party who wishes to
pirate or reverse engineer the customer FPGA design. A
pirate who obtains a copy of the bitstream could then build
clones of the customer’s IP protocol router product contain-
ing FPGAs which were loaded with the pirated bitstream.

[0060] As described above the purpose of the security
circuitry is to prevent sensitive information from appearing
on signals 20 which may be monitored by a malicious party.
However, as can be seen from the description of the FPGAs
lifecycle this is only a concern after the equipment contain-
ing the FPGA leaves the FPGA customer’s facility. The
FPGA customer has created the design in the FPGA and can
access all the CAD files (including schematics or VHDL
source and the bitstream itself) associated with it, therefore,
there is no reason to protect the FPGA bitstream while the
FPGA is within the customer’s premises.

[0061] Normally, an FPGA customer will power up a
system containing an FPGA in their facility prior to shipping
it to the end user in order to test that it is functional. If the
customer always powers on the equipment within his facility
before shipping the equipment the signals 20 may transmit
sensitive information the first time the FPGA is powered up
in the system, however, subsequent transfers of data across
the signals 20 must be protected.

[0062] This observation leads to a method for using the
structure of FIG. § to implement bitstream security consist-
ing of the following steps:

[0063] 1. The customer places a standard, insecure,
FPGA bitstream in the nonvolatile memory. This
bitstream contains a small amount of header infor-
mation which indicates to the FPGA that it is an
insecure bitstream but should be converted into a
secure one.

[0064] 2. The FPGA security circuitry loads the
FPGA bitstream and determines, based on the header
information, that security must be applied. It also
determines that the bitstream is insecure and passes
it directly to the FPGA configuration circuitry with-
out change.
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[0065] 3. The FPGA security circuitry causes the
random number generator to create a new key and
loads this key into the device ID register.

[0066] 4. After the entire FPGA is configured the
security circuitry reads back the bitstream informa-
tion from the configuration memory and processes it,
based on the key information in the device ID
register, to form a secure bitstream. This secure
bitstream is then written back to the off-chip non-
volatile memory overwriting and obliterating the
original insecure bitstream information. The header
information on this new secure bitstream is changed
to indicate that it is a secure bitstream.

[0067] After this step a link has been established between
the FPGA and the off-chip nonvolatile memory: the bit-
stream 1in the off-chip memory will not successfully config-
ure any other FPGA. The unencrypted form of the bitstream
is no longer present in the external memory. Since the
bitstream is encrypted accessing the bitstream will not help
in reverse engineering the user design. After these steps the
FPGA is properly configured and operating normally allow-
ing the equipment to be tested. Power will be removed
before the product containing the FPGA is shipped to the end
user. The next time power is applied to the FPGA (which
may happen outside the customer’s premises) the following
steps will take place:

[0068] 1. The FPGA begins to load the secure bit-
stream from the nonvolatile memory and determines
from the header flags that it is a secure bitstream.

[0069] 2. The security circuitry processes the secure
bitstream using the secret information in the device
ID register to verify it and create a standard insecure
bitstream.

[0070] 3. This standard bitstream is passed on to the
configuration circuitry which loads it into the con-
figuration memory.

[0071] 4. Assuming the security circuitry does not
detect any problems with the bitstream the FPGA is
enabled and operates normally after configuration. If
a problem is detected the security circuitry might
blank the on chip configuration memory and disable
the user input/output pins or take other appropriate
steps to ensure the spurious design is not activated.

[0072] At any time the user can reprogram the external
memory with a new design: if security is required the FPGA
will generate a new ID code and encrypt it using the method
outlined above.

[0073] FIG. 6 shows an FPGA 100 according to applica-
tion GB9930145.9 which supports secure download of bit-
stream information. Random number generator 72, ID reg-
ister 62, status register 74, configuration circuitry 12 and
configuration memory 14 have the same function as in the
description of FIG. 5 above. User logic 106 is shown in this
diagram but has been omitted from earlier figures: in this
case a portion of the user logic is used to implement the
download security algorithm. Data 104 from a communica-
tions network is supplied to the user logic through conven-
tional user Input/Output pins on the FPGA. On chip con-
nection 102 between the security circuitry and the user logic
is provided to transfer downloaded program data to the
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security circuitry after decryption by the user logic. The
security circuitry will then encrypt this data using the key in
ID register 64 before storing it in external memory 32. Thus
the plaintext programming data is never available off-chip
where it could be monitored by a malicious party.

[0074] Although the structure of FIG. 5 described above
obviates many of the problems of prior-art bitstream security
circuits it requires some form of on-chip nonvolatile
memory to implement nonvolatile ID register 62. This can
complicate manufacturing flow and may increase wafer cost
or prevent the use of the highest performance CMOS
processes. From an FPGA manufacturer’s point of view it is
desirable that the bitstream security circuit be implemented
on a standard CMOS process with a standard manufacturing
flow.

[0075] There are two separate requirements on an FPGA
bitstream security circuit:

[0076] 1. It should prevent pirating user designs by
making copies of the bitstream in the configuration
memory.

[0077] 2.1t should prevent reverse engineering of the
user design by analyzing the bitstream.

[0078] The second requirement is the more important
since if it is not met an attacker can easily defeat any
circuitry to enforce the first requirement. This is because if
an attacker has reverse engineered design files he can easily
use the FPGA vendor CAD tools to create a new bitstream
file. The attacker also has the ability to make alterations or
modifications to the customer design to better suit his own
product and make determination that the design was copied
more difficult.

[0079] Protection against design reverse engineering can
be provided by encrypting the design using a secret key
stored on the FPGA. The prior art schemes described above
assumed that a unique key is required for each FPGA but this
is not the case. Every FPGA could have the same secret key
provided that the key remains secret. Naturally, if there is
only a single secret key for all FPGAs then the consequences
of the key becoming generally available are much worse
than if every FPGA has a different key. It is likely that since
a single key is more valuable (because it can decrypt any
user design) an attacker would be willing to devote more
resources to cryptanalysis or physical analysis of the FPGA
in order to determine the key.

[0080] Design piracy in which a competitor makes illegal
cloned products by copying FPGA bitstream memories is
normally an economic rather than a security issue for an
FPGA user. That is, the FPGA customer’s concern is nor-
mally the loss of revenue resulting from unauthorized clones
of its product rather than a security threat resulting from any
unauthorized clones of the product being available. Thus, for
most customers it is not necessary for a protection scheme
to absolutely prevent use of copied bitstreams it must only
make it economically unattractive to manufacture cloned
products using copied bitstreams.

[0081] A cryptographic scheme in which a single secret
key is used for all FPGAs apparently provides no security
against design piracy since the encrypted bitstream can be
copied and used on any FPGA. Therefore, in the prior art it
is assumed that every FPGA must have a unique key in order
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to prevent design piracy. This may be true if the goal is to
prevent piracy absolutely, however, if the goal is to make
piracy economically unattractive it is not necessary to have
a unique key on every FPGA.

[0082] Imagine that FPGAs were manufactured with one
of two secret keys (key A and key B) embedded in the
artwork of the design. After manufacturing the FPGA chips
manufactured with the masks encoding key A were mixed
together with those manufactured using the masks encoding
key B and the packages were marked identically. A customer
who bought FPGAs could have no way of telling which
secret key was present on a particular chip. If the customer
was a pirate who had a secure bitstream that he had copied
illegally and wished to use in cloned equipment he would
have a problem: only 50% of the FPGAs that he bought
would actually work with his copied bitstream. This would
place him at a considerable economic disadvantage com-
pared with the creator of the design who can load an
unencrypted bitstream into any FPGA and have it generate
a secure bitstream using whatever key is implanted on chip.

[0083] Of course, the situation in which there are exactly
two secret keys is just one possibility. The manufacturer
could equally well have 5 variant keys or 100 and might
have a policy of changing the keys every month or assigning
particular keys to particular geographic regions. By increas-
ing the number of variant keys the manufacturer increases
the number of FPGAs a pirate would expect to have to buy
to find one that worked with a given bitstream. If the keys
are changed at regular intervals the pirate will only have a
finite period in which he can make use of a pirated bitstream.
By assigning different keys to FPGAs supplied in different
geographic areas the manufacturer can make it difficult for
a pirate located in a region with lax law enforcement to
manufacture cloned equipment based on a design copied
from equipment manufactured in another country. By
assigning a special key to a particular customer or group of
customers who buy very large numbers of FPGAs the
manufacturer can ensure that a pirate will be unable to buy
FPGAs which will run bitstreams copied from those cus-
tomers products on the general market. This could be done
by using separate keys for FPGAs supplied to corporate
accounts and distribution accounts.

[0084] Since only a relatively small number of keys is
required it is practical to embed the key information in the
mask set used to pattern the wafers during the manufacture
of the FPGA chip, this technique of hiding a small amount
of secret data in a much larger data set is termed steganog-
raphy and can provide a high level of security for the key
information. It is likely to be significantly more secure
against physical analysis than a solution which used a small
localized nonvolatile memory to implement the key storage.

[0085] Advantages of this method of securing FPGA bit-
streams when used in conjunction with the techniques
disclosed in application GB 9930145.9 include:

[0086] 1. The cryptographic key is never transferred
outside the chip making it very difficult for unau-
thorized parties to obtain its value.

[0087] 2. The FPGA CAD tools need only produce
standard, unencrypted bitstreams and need not keep
track of device identifiers.
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[0088] 3. The user may change the design to be
implemented by the FPGA at any time simply by
reconfiguring the external memory with a new
design.

[0089] 4. A manufacturer may install identically con-
figured serial EPROMSs on all boards without com-
promising security, provided that the boards are
powered on at least once before leaving his facility.

[0090] 5. The technique is upwards compatible with
existing methods of configuring FPGAs: thus an
FPGA can be created which is compatible with prior
art bitstreams as well as supporting this secure
technique.

[0091] 6. The FPGA can be used with standard In
System Programmable serial EPROMs—the serial
EPROMSs need contain no additional security cir-
cuitry.

[0092] Thus, this technique provides the design security
offered by nonvolatile FPGA technologies without compro-
mising the density, performance or ease-of-use of SRAM
FPGAs.

[0093] The invention improves the security system
described in the applicants application GB 9930145.9 by
removing the need for on-chip nonvolatile key memory. This
application covered the cryptographic protocols used in
some detail and for this reason they are described only
briefly here.

[0094] The textbook, “Applied Cryptography,” by Bruce
Schneier 2™¢ Edition. John-Wiley, 1996 gives sufficient
detail to allow one skilled in the art to implement the various
cryptographic algorithms discussed below. It also includes
computer source code for many of the algorithms.

[0095] The presently preferred technique for use in the
security circuitry 64 is a symmetric block cipher in Cipher
Block Chaining (CBC) mode. Many such ciphers are known
in the art and would be suitable for this application including
RC2, RC4, RC5 and IDEA. The best known such cipher is
the Data Encryption Standard (DES). DES is often operated
in a particularly secure mode called Triple DES in which the
basic DES function is applied three times to the data using
different keys: the details are presented on page 294 of the
Schneier textbook referenced above.

[0096] Cipher Block Chaining mode is explained in detail
in the section starting on page 193 of the Schneier textbook,
the computation of the Message Authentication Code is
described on page 456. These techniques have also been
described in various national standards documents and are in
common use in the industry.

[0097] Cipher Block Chaining mode has two important
advantages in this application:

[0098] 1. The feedback mechanism hides any struc-
ture in the data. FPGA configurations are very regu-
lar and large amounts of information about the
design could be determined if a simpler cipher mode
(for example Electronic Code Book (ECB)) was used
in which the same input data would always be
encrypted to the same output data. For example if the
word 0 happened to occur very frequently in the
bitstream (perhaps because 0 was stored in configu-
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ration memory corresponding to areas of the device
not required by the user design) then the encrypted
value for 0 would occur frequently in the output data.
An attacker could easily determine which areas of
the device were not used by the customer design
simply by looking for a bit pattern which occurred
very frequently.

[0099] 2. The feedback value left at the end of the
encryption can be used as a Message Authentication
Code (MAC) in the same way as the value computed
by a secure hash algorithm. The MAC is also
appended to the bitstream and verified after decryp-
tion.

[0100] In a preferred embodiment of this invention the
Initial Value (IV) required in CBC mode is created using the
on chip random number generator and saved as part of the
header before the configuration information. As shown in
FIG. 6, the IV 84 is stored unencrypted as part of the
bitstream, its function is to ensure that if the same, or a
similar bitstream, is encrypted with the same key a com-
pletely different set of encrypted data will be produced. The
IV is particularly important if the on chip key memory is
implemented in a technology which can only be written once
(for example antifuse) or if the key is embedded in the
maskwork. The IV is of less value in the situation where a
new key is generated and stored each time a new bitstream
must be secured as in a specific embodiment disclosed in
application GB9930145.9.

[0101] PERSONALIZING THE FPGA

[0102] A modem SRAM programmed FPGA will be
implemented on a CMOS process with 5 or more metal
layers and transistors with a gate length of 0.18 microns. The
die may be up to 2 cm on a side and contain tens of millions
of transistors. In order to encode a particular cryptographic
key onto the chip one or more of the optical masks used in
manufacturing the chip must be altered. A very secure cipher
such as triple DES requires a 168 bit key, so the task is to
hide less than 200 bits of secure information in the massively
complex manufacturing data for the FPGA. The technique of
hiding a small amount of secret data in a much larger
database is called steganography and has been studied by the
cryptographic community for many years although most
prior-art uses of steganography (see for example “Disap-
pearing Cryptography,” by Peter Wayner, published by Aca-
demic Press, ISBN 0-12-738671) have concerned tech-
niques for hiding secret messages in long text files or
images.

[0103] There are very many ways in which the small
number of bits of key information could be embedded into
the photomasks used in manufacturing the FPGA chip. For
example, a shape in one place on the contact layer could
connect a polysilicon wire to a ground signal (logic 0) on a
metal wire and a shape in another place on the contact layer
could connect the polysilicon signal wire to power (logic 1).
Some of the considerations involved will be discussed in a
later section.

[0104] Every time a new mask is required the FPGA
manufacturer must prepare a database in electronic form and
pay a service charge to a mask manufacturer. The total cost
of preparing a mask may be on the order of $5000. This is
negligible compared with the revenue generated from an
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FPGA manufactured in high volume. However, having mul-
tiple potential masks for a given product is also an incon-
venience in the silicon foundry. Thus it is desirable from the
manufacturer’s point of view that as few mask variants as
possible are required to implement the security scheme.
Preferably, only a single mask out of the 15 or so required
to manufacture an FPGA is changed to implement the key
choice: since a mask may have more than 10 million shapes
on it this is still a very large data set in which to hide the
small amount of key data. In a currently preferred embodi-
ment the first level contact mask which makes connections
between first level metal and polysilicon and diffusion wires
is changed to embed the key information.

[0105] There is a direct trade-off between the inconve-
nience associated with multiple masks and the degree to
which the system inconveniences pirates. Here we will
consider some reasonable choices a manufacturer might
make. The correct choice will depend on commercial con-
siderations and the perceived degree of threat at a given
point in time.

[0106] 1. The manufacturer might choose only to change
the key whenever a new mask set was required. A new mask
set might be required to increase production volume, when
the design was transferred to another wafer fab, when the
design was shrunk to a more aggressive process technology
or when a correction was made to enhance yield or correct
a problem. This policy would be very easy to implement and
would inconvenience pirates to the extent that they could not
rely on purchasing chips which would work with their
copied bitstream: at any time the FPGAs might become
incompatible with the bitstream.

[0107] 2. The manufacturer might provide a new mask to
the wafer fab every month (or other appropriate period) at
which time the previous mask would be destroyed. Thus
there would only ever be one mask approved for manufac-
turing at a given point reducing the complexity of the
manufacturing process. With this method the pirate would
know that a copied bitstream would only have a short
lifetime in which it could be used to clone products.

[0108] 3. The manufacturer might supply several possible
masks to the fab and the mask to be used to process a
particular wafer of set of wafers might be chosen at random
at the time of manufacture. This is a more inconvenient
method for the manufacturer but offers more protection
against design piracy.

[0109] The second technique (retiring keys after a certain
period) is particularly important since it provides a degree of
damage limitation if an attacker succeeds in obtaining a
secret key by limiting the period of time he can make use of
it.

[0110] STRENGTH OF THE SECURITY SYSTEM

[0111] When considering the design of a security system it
is helpful to analyze the means by which an attacker might
seck to defeat it. In this case the attacker has three main
avenues of attack: attempting to obtain the secret key in
order to decrypt the bitstream, attempting to access the
unencrypted bitstream and attempting to remove the eco-
nomic penalty for using a pirated bitstream.

[0112] There are several ways an attacker might attempt to
obtain the secret key:
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[0113] 1. By exhaustive search of all possible keys:
the attacker creates a bitstream file using the vendor
CAD tools and presents in to an FPGA for encryp-
tion. He then repeatedly encrypts the same file using
software running on a computer with all possible
keys until he finds the key which results in the same
ciphertext as was generated by the FPGA. At this
point he has found the key stored on the FPGA.

[0114] 2. By cryptanalysis, using more sophisticated
techniques than a brute force key search. Such tech-
niques, such as differential cryptography are
described in the Schneier textbook cited above.

[0115] 3. By physical analysis of the FPGA chip: for
example conductive layers can be stripped back one
at a time and viewed using a microscope to deter-
mine patterning information. This is a destructive
technique in that it after the top layer is etched off the
chip will no longer function.

[0116] 4. By physical analysis of an operating FPGA
chip for example by using a voltage contrast electron
microscope to determine the logic levels present on
signals.

[0117] 5. By tampering with an operating FPGA chip
for example by using a Focussed Ion Beam (FIB)
machine to cut logic signals or connect logic signals
to each other or to power supply lines.

[0118] 6. By illegally attempting to gain access to
mask work or key information from employees of
the manufacturer or silicon fab.

[0119] These attacks can also be combined-for example if
physical analysis provides some of the key bits then an
exhaustive search could be used to determine the remaining
unknown bits.

[0120] It is generally accepted that attacks 1 and 2 are not
practical if a properly designed cipher with a long enough
key is used. A preferred cipher would be triple DES with a
168 bit key used in cipher block chaining mode with an
initial value (IV) generated by an on-chip random number
generator. The use of cipher block chaining and a random
initial value makes cryptanalysis based on patterns in the
bitstream impractical. The use of a 168 bit key makes key
search impractical for the immediate future. DES is a well
known and well understood cipher which is generally
accepted to be well designed. It should be understood that
there are many other ciphers and use modes disclosed in
standard textbooks which would provide strong security in
this application.

[0121] Attack 3, physical analysis of FPGA artwork is
certainly possible in theory but very difficult in practice and
becoming more difficult with each generation of process
technology. The attacker’s main advantage is that the key
has to be presented to the encryption unit, at which point it
will be present on an identifiable set of wires. However, the
FPGA designer can make it very difficult to trace the source
of the signals on these wires by repeatedly changing con-
ductive layer and intertwining the security signals with the
many millions of logic signals on the chip. The attacker
might also try to determine which signals were involved
with the security circuits by obtaining artwork for two chips
known to have different keys and using a computer to find
the differences between the patterning. This technique can
be combated by deliberately creating a large number of
random differences on the artwork which are not related to
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the security information. It is also very difficult to obtain a
complete set of artwork for an integrated circuit by micro-
scopic analysis.

[0122] Attack 4 is also practical but can be made excep-
tionally difficult if care is taken in the design of the FPGA.
Test equipment is available which will show the logic value
on a conductor in an IC, theoretically all an attacker has to
do is to either monitor the lines connecting the key to the
encryption unit (to obtain the key) or the lines connecting the
encryption unit to the configuration memory (to obtain the
decrypted bitstream). The attacker’s main problem is that the
voltage contrast electron microscope requires a clear view to
the lines. Thus the designer must place lines with sensitive
signals on the lower conductive layers and ensure that they
are obscured by signals on the higher layers. This is not
difficult in a modem process with 6 or more layers of metal.
If an attacker attempts to etch away or otherwise remove the
top layers in order to get a view of the sensitive signals the
designer can ensure that important signals will be destroyed
which result in the chip becoming inoperative.

[0123] Attack 5 is also practical but the precautions
required to thwart it are much the same as for attack 4.
Sensitive signals should be placed on the lower conductive
layers so that any attempt to interfere with them will require
to cut through many other layers of metal and render the chip
inoperative.

[0124] Attack 6 is probably the most cost effective way of
obtaining key information for an attacker. The manufacturer
must put processes in place so that only a small number of
trusted employees have access to the key information and
that it is stored securely.

[0125] Manufacturers of smart-card ICs for applications
such as cellular telephones, digital cash and cable television
face a very similar problem in preventing attackers from
obtaining security information from their devices and many
of the techniques they developed, for example the use of
special overglass passivation on the die to prevent probing
are applicable here.

[0126] The methods that an attacker could use to access
the unencrypted bitstream are very similar to those used to
gain access to the secret key. The unencrypted bitstream is
placed in the FPGA configuration memory by the on chip
security circuitry, thus an attacker could use attacks 4 and 5
to attempt to determine the values in the configuration
memory. This is complicated by the fact that the bitstream is
very large perhaps hundreds of thousands of bits. The FPGA
manufacturer must guard against this by ensuring that sen-
sitive signals which carry configuration data are routed on
the lower conductive layers. The attacker might also attempt
to illegally gain access to the unencrypted design from
employees of the FPGA customer.

[0127] ATTACKS ON THE ANTIPIRACY METHOD

[0128] As well as attacks which attempt to determine the
key or unencrypted bitstream information an attacker can try
and find an economic way to use a copied bitstream. Several
such attacks exist:

[0129] 1. The attacker could act as an intermediary
sorting FPGAs according to their key by loading
various bitstreams known to have been generated on
FPGAs with different keys and determining which
bitstream activated properly. After sorting the
FPGAs the attacker could distribute them to pirates
who required FPGAs with particular keys.
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[0130] 2. The attacker might obtain several examples
of the unit that he wished to copy in order to obtain
bitstreams for several different FPGAs. This would
increase his chances of having a bitstream that would
work with a particular FPGA that he purchased.

[0131] 3. The attacker might attempt to resell FPGAs
that he could not use because of the bitstream
security.

[0132] The main counter to all these attacks is to increase
the number of variant FPGAs in the marketplace.

[0133] DISTRIBUTING KEY INFORMATION

[0134] One way of encoding key information in the art-
work of the FPGA device is to create wires which attach to
the key input of the encryption circuit and extend in a
complicated pattern into the surrounding circuitry, changing
conductive layer and direction at regular intervals to make it
difficult for an attacker to trace them using microscopic
analysis of the manufactured integrated circuit. At some
point on these wires a connection would be made to power
or ground to set the key bit to logic one or zero as
appropriate.

[0135] Instead of connecting the wire to power and ground
it would also be possible to connect them to a logic signal
which had the correct value (1 or 0) at a particular instant in
time. The advantage of this technique is that an attacker
trying to observe the value on the signal using a voltage
contrast microscope would have a much more difficult task
since the key value would only be present on the wire for a
few nanoseconds.

[0136] It can readily be appreciated that the larger the area
of the chip in which key bits can be hidden the harder it will
be for an attacker to determine their value. An alternative to
the straightforward approach described above is to connect
the encryption circuitry key input to a checksum circuit
which is itself connected to the configuration memory as in
FIG. 7. On power up, prior to loading a bitstream, an FPGAs
control memory is normally set to all zeros or a fixed pattern
or zeros and ones. This initial configuration ensures that the
user logic on the FPGA is in a known state which does not
draw static power. It is easy to use small changes in the
masks to ensure some memory cells power up to either zero
or one (see, for example, U.S. Pat. No. 4,821,233 to Hsieh
for one way of achieving this). Only a small subset of
memory cells control critical resources which must be set in
a particular state to ensure there is no static power consump-
tion (for example routing lines with more than one potential
driver)—the initialization state of the remaining cells has no
impact on device functionality and can be used to encode
key data. Once a bitstream is loaded the initialization state
is overwritten with the value specified in the bitstream.

[0137] By setting the initial state of a random selection of
memory cells (using changes to the masks) out of the
hundreds of thousands in the device configuration memory
the FPGA manufacturer can hide key information on the
device. This key information can be extracted using a
checksum circuit 80 to compute a checksum of the state of
the memory cells using a standard Cyclic Redundancy
Check (CRC) algorithm to collapse the hundreds of thou-
sands of bits of configuration memory into a key which is
preferably between 100 and 200 bits. CRC circuits are
commonly used on prior art FPGAs to check bitstream
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integrity so this is may involve simply re-using a resource
already present on the device. Thus the checksum circuit and
the distributed key information replace the device ID reg-
ister 62 in FIG. 5.

[0138] Distributing the key in this way creates a complex
relationship between changes in memory cell artwork and
key bits. With a suitable CRC polynomial all memory cells
can potentially affect all key bits. There are potentially many
ways of encoding a given key into the memory cells and
determining the state of a given memory cell through
analyzing the artwork gives no information about the value
of a given bit in the key register.

[0139] This technique seems to make determination of the
device key from microscopic analysis of the FPGA masks on
a reasonably large sized FPGA so labor intensive as to be
impractical. Attacks which use voltage contrast microscopes
and FIB machines to observe and manipulate operational
chips are still of concern and must be guarded against
through careful routing of sensitive signals on lower con-
ductive layers.

[0140] Although the configuration memory is a particu-
larly attractive area in which to embed the key information
the basic idea of using a CRC circuit to extract key infor-
mation from a set of changes to a large logic circuit which
do not affect its primary function could be applied to other
structures on the device—for example a large area of ran-
dom logic.

[0141] Similarly, although a CRC code has been described
here, it will be appreciated that the requirement is for a code
which summarizes a large amount of data into a much
smaller sequence of bits. Many such codes are available in
the art including the cryptographic hash functions described
in the Schneier textbook.

[0142] STRENGTHENING LEGAL PROTECTION

[0143] The cryptographic protection described in applica-
tion GB 9930145.9 and this application also makes it much
easier to mount legal challenges to piracy:

[0144] 1. The creator of the FPGA design will ship
FPGAs in its products which have applied security
themselves to an insecure bitstream. The preferred
security technique involves generating a random
initial value for cipher block chaining cryptography.
In the preferred implementation the initial value has
64 bits. It is extremely unlikely that two bitstreams
will have the same initial value. Thus every FPGA in
a legitimate manufacturer’s product will load a com-
pletely different encrypted bitstream. In a pirate’s
products every FPGA will load an identical bit-
stream.

[0145] 2. The preferred security technique involves
calculating a 64 bit Message Authentication Code
(MAC) which is appended to the bitstream. The
message authentication code can be created using the
cipher in CBC mode used to encrypt the bitstream or
a separate secure hash function. A MAC can be
calculated and appended to a bitstream even if the
bitstream or parts of the bitstream (such as copyright
messages) are stored unencrypted. If either this code
or the bitstream is changed in any way the FPGA can
detect the mismatch and will not operate as disclosed
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in GB9930145.9. Thus, a pirate must use an exact
copy of the pirated design including any data (such
as a copyright message) inserted in the design to
identify its ownership.

[0146] It is virtually impossible for a pirate to end up with
an identical bitstream to one used in a legitimate manufac-
turer’s product unless they copied it. Moreover, if the owner
of the FPGA design keeps a record of the message authen-
tication codes in the FPGAs shipped with its products it can
tell which product the bitstream was pirated from and
potentially identify the customer to whom the product was
sold from its sales records.

[0147] These advantages are not dependent on each FPGA
having a distinct key and are available when the mask
programmed secret keys disclosed in this application are
used.

[0148] SUPPORT FOR SECURE DOWNLOAD

[0149] Many companies are becoming increasingly inter-
ested in methods for downloading FPGA bitstreams to a
product after shipment to the end user. This allows a
company to correct bugs in the design captured in the
bitstream shipped with the product or to upgrade the product
to a higher specification. This technique is particularly
applicable to FPGAs which are installed in equipment
connected to the internet or the telephone system.

[0150] There are outstanding security concerns with this
technique—a malicious party or a simple error could result
in an incorrect bitstream being downloaded. An incorrect
bitstream could potentially damage the product or render it
inoperative. The incorrect bitstream might be downloaded to
a very large number of systems in the field before a problem
became apparent. Thus, it is desirable to implement a
cryptographic protocol to secure downloads of bitstream
information. An attractive method of implementing this
protection is to use a symmetric cipher in cipher block
chaining mode. However, in this application the secret key
installed in the equipment must be shared with computer
software at the equipment manufacturer’s facility in order
that the manufacturer can encrypt the bitstream prior to
transmission over the public network.

[0151] It is desirable that the secret key for securing
bitstream download stored in the equipment is protected
from unauthorized access. One straightforward way of doing
this is to store it on the FPGA chip in a nonvolatile ID
register. This is quite practical but it is not necessary if the
FPGA is implemented according to this invention because
the off-chip nonvolatile memory is already cryptographi-
cally secured. Thus the key for downloading bitstreams can
be safely stored with the rest of the FPGA configuration
information. This has the advantage that the FPGA is not
limited to a particular cryptographic algorithm or key length
for secure bitstream download. This is important because
communications security protocols on the internet and tele-
communications industry are in a continuous state of flux
and are not under the control of any particular manufacturer.
FPGA customers are likely to wish to use a variety of
download security protocols according to the requirements
of the particular system they are designing.

[0152] The structure of FIG. 6 disclosed in the applicants
earlier application fulfills this requirement, however it
requires an on chip nonvolatile ID register 62 in the FPGA.
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Using the technique suggested in this patent of encoding the
secret key for secure configuration in the FPGA mask set the
need for on-chip nonvolatile memory is removed. The
security of the download protocol against unauthorized
accesses is guaranteed as long as the on chip secret key is not
compromised. A single secret key embedded in all FPGAs
would provide the download security function. Using mul-
tiple mask sets embedding different secret keys would in
addition to providing download security make it economi-
cally unattractive to clone the product.

[0153] CONCLUSIONS

[0154] The reader will see that the security system of this
invention allows an FPGA or microcontroller with a large
on-chip memory to securely restore the state of that memory
from an off-chip nonvolatile memory while maintaining the
ease of use of a prior art FPGA or microcontroller. Further,
it can be implemented using a standard CMOS manufactur-
ing flow since it does not require on-chip nonvolatile
memory or chip specific customization.

[0155] While the technique has been described with ref-
erence to FPGAs once skilled in the art will recognize that
it is equally applicable to any integrated circuit which must
restore the state of an on-chip memory securely from an
off-chip nonvolatile memory. Such chips would include
Field Programmable Interconnect Components (FPICs),
microcontrollers with on-chip SRAM program and data
memory and hybrid chips containing, for example, a micro-
controller and an area of programmable logic.

[0156] While the description above contains many specific
details, these should not be construed as limitations on the
invention, but rather as an exemplification of one preferred
embodiment thereof. Many other variations are possible.

[0157] Accordingly, the scope of the invention should be
determined not by the embodiments illustrated but by the
appended claims and their legal equivalents.

What is claimed is:
1. A method comprising:

fabricating a first plurality of FPGA integrated circuits
with a first secret key embedded by way of a first mask
set; and

fabricating a second plurality of FPGA integrated circuits
with a second secret key embedded by way of a second
mask set.

2. The method of claim 1 wherein a first secure bitstream
will configure properly user-configurable logic of the first
plurality of FPGA integrated circuits, but not the second
plurality of FPGA integrated circuits.

3. The method of claim 1 further comprising:

loading an unencrypted bitstream into one of the first
plurality of FPGA integrated circuits to generate a
secure bitstream using the first secret key.

4. The method of claim 1 wherein the first plurality of
FPGA integrated circuits with the first secret key are
assigned to a first geographic area and the second plurality
of FPGA integrated circuits with the second secret key are
assigned to a second geographic area.

5. The method of claim 1 wherein the first plurality of
FPGA integrated circuits with the first secret key are fabri-
cated in a first time period and the second plurality of FPGA
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integrated circuits with the second secret key are fabricated
in a second time period, different from the first time period.

6. The method of claim 1 wherein only one mask differs
between the first and second mask sets.

7. The method of claim 1 wherein the first plurality of
FPGA integrated circuits with the first secret key are
assigned exclusively to a first customer.

8. The method of claim 5 wherein the first time period is
about the same duration as the second time period.

9. The method of claim 5 wherein the first time period is
a different duration from the second time period.

10. The method of claim 6 wherein the one mask is a
contact mask.

11. The method of claim 1 wherein there are random
differences between artwork of the first and second plurality
of FPGA integrated circuits in addition to the different
embedded secret keys.

12. The method of claim 1 wherein the first and second
secret keys are presented on wires of respective plurality of
FPGA integrated circuits for only a limited duration.

13. The method of claim 1 wherein the first secret key is
embedded by setting an initial state of a selection of memory
cells in a device configuration memory of the FPGA inte-
grated circuit.

14. The method of claim 1 wherein the first secret key is
embedded by changes to a relatively large block of logic in
the first plurality of FPGA integrated circuits and its value
extracted using a CRC algorithm.

15. The method of claim 13 further comprising:

extracting the first secret key by using a CRC algorithm
to compute a checksum of the initial state of the device
configuration memory.

16. The method of claim 1 further comprising:

loading an unencrypted bitstream into one of the first
plurality of FPGA integrated circuits to generate a
secure bitstream based on the first secret key and an
on-chip generated random number.

17. The method of claim 1 further comprising:

loading an unencrypted bitstream into one of the first
plurality of FPGA integrated circuits to generate a
secure bitstream based on the first secret key and an
on-chip generated random number, wherein the secure
bitstream includes a message authentication code.

18. A method comprising:

embedding a first secret key within the artwork of an
FPGA integrated circuit;

storing a user-defined second secret key within an
encrypted FPGA bitstream stored in an external non-
volatile memory accessible by the FPGA;
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decrypting the user-defined second secret key using the
first secret key; and

setting up a secure network link between the FPGA and a
server using the user-defined second secret key.

19. The method of claim 18 further comprising:

downloading an FPGA bitstream using the secure network
link;

encrypting the downloaded FPGA bitstream using the first
secret key; and

storing the encrypted downloaded bitstream in the exter-
nal memory.
20. The method of claim 18 wherein the secure network
link is created using a standard internet security protocol.
21. The method of claim 18 further comprising:

configuring the FPGA using the encrypted downloaded
bitstream stored in the external memory.

22. A method comprising:
storing a first secret key on an FPGA chip;

causing the FPGA to calculate a message authentication
code (MAC) corresponding to a user design; and

storing the message authentication code with bitstream
information in a nonvolatile memory.

23. The method of claim 22 further comprising:

storing copyright messages with the bitstream informa-
tion;

detecting unauthorized alterations to the bitstream using
the message authentication code; and

preventing bitstreams which have been altered from being
used to configure an FPGA.

24. The method of claim 22 further comprising:

recording the message authentication code along with
corresponding identification information for a product
containing the FPGA; and

examining the message authentication code stored in the
nonvolatile memory of a product containing a pirated
FPGA design, which will enable determining the iden-
tity of the customer to whom the pirated FPGA was
originally supplied using a record of MACs and cor-
responding product identification.



