US 20020199110A1

12y Patent Application Publication (i) Pub. No.: US 2002/0199110 A1l

a9 United States

Kean

43) Pub. Date: Dec. 26, 2002

(5499 METHOD OF PROTECTING
INTELLECTUAL PROPERTY CORES ON
FIELD PROGRAMMABLE GATE ARRAY

(75) Inventor: Thomas A. Kean, Edinburgh (GB)

Correspondence Address:

TOWNSEND AND TOWNSEND AND CREW,

LLP

TWO EMBARCADERO CENTER

EIGHTH FLOOR

SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Algotronix Ltd., 130/10 Calton Road,
Edinburgh EHS8 8JQ (GB)

(21) Appl. No.: 10/172,802

Publication Classification

(51) Int. CL7 oo GOGF 11/30
(52) US.ClL oo 713/189
(57) ABSTRACT

Techniques are used to protect intellectual property cores on
field programmable gate arrays. An approach is to associate
each field programmable gate array, or a limited number of
field programmable gate arrays, with a secret key. Each field
programmable gate array may only be properly configured
or programmed by an appropriate encrypted bitstream
(which includes one or more intellectual property cores).
This encrypted bitstream has been encoded by or for the
secret key associated with a particular FPGA. Other tech-
niques are also presented in this application and include
network-based, nonnetwork-based, software-based, layered,
and other approaches. The techniques allow an intellectual
property core vendor to charge a customer per-use or per-
configuration of their intellectual property. This is because
an encrypted bitstream is useable only in a limited number,
possibly just one, of the integrated circuits.

Core Vendor

IP Cores

(22) Filed: Jun. 13, 2002
(30) Foreign Application Priority Data
Jun. 13, 2001 (GB) ccevvvvrecneerccriecenecene GB0114317.1
Designer
Design Netlist
Implementation

Software Vendor

CAD Software

Chip

Trusted External
Party (TEP)

Information

Bitstream

FPGA Chip Vendor
BE—

Customer

FPGA Chips

Equipment cohtaining FPGA’s

End-User




Patent Application Publication

Implementation

Dec. 26,2002 Sheet 1 of 11 US 2002/0199110 A1

Core Vendor

l

Software Vendor

FPGA Chip Vendor

IP Cores

Designer

CAD Software
Bitstream
\ 4
Customer
FPGA Chips

Equipment containing FPGA’s

End-User

FIGURE 1



Patent Application Publication Dec. 26,2002 Sheet 2 of 11 US 2002/0199110 A1

Designer Core Vendor

Design Netlist IP Cores

Trusted External
Party (TEP)

Implementation
Software Vendor

CAD Software

Chip
Information

Bitstream

V-
FPGA Chip Vendor Customer
EEEEEEE—
FPGA Chips .
Equipment containing FPGA’s
h 4
End-User

FIGURE 2



US 2002/0199110 A1

Patent Application Publication Dec. 26,2002 Sheet 3 of 11

“ICIH P1qESISYIAS |

ore[dwa [, uonenueIsu] J(IH 10 [OqWAS

1L wutensuoy +ISIISN 10

£ HAdNODIA

PO UOnEMUIg

<

I01eIoUSn)
210D

AIIII

sigyawered
paijddns 198y




US 2002/0199110 A1

Patent Application Publication Dec. 26,2002 Sheet 4 of 11

oA
weansig

ISI[IAN 210D
parddng 1opusp VYOI

ISIION 210D Aured ¢

ISTIAN 210D Aired €

¥ TN OI1A
FIOMIAN
—] UONEULIOJU]
Aeloq
] g
suodey
—]
ISIION
(12A10g) (uarD) ugisaq 1as()
> sjoo, S[ooL
uonejuawajdw] uoneuswayduy
Jondwo) (dd.1) 1oindwo)) 1usissq YOI
Ared [euIaxg pasniy,




Patent Application Publication Dec. 26,2002 Sheet 5 of 11 US 2002/0199110 A1

FPGA Vendor

oA —
FPGA
Chip —»

Vendor Test
Equipment

Trusted External Party

Server
Computer

Chip
Database

Network
Connection

FIGURE §



US 2002/0199110 A1

Patent Application Publication Dec. 26, 2002 Sheet 6 of 11

HSVT

weansitg

Kiowoy ¢

vVOdd

H uonednNUap]
VOdA

UOB3JNUSP] JSWOISNY)

Jomndwo)
Iswoisn)y
vVOdd

9 TINOIA

YI0MION

ndwo) Jowoisn) YOI

IoA10S

aseqere
udiseg

aseqeie(y
did

Aued [BuI9IXg pasni],




Patent Application Publication Dec. 26,2002 Sheet 7 of 11 US 2002/0199110 A1

Customer_id,

Design_id,

chlp_ld Customer
Trusted < > Accounting

Database
External ¢
Party (TEP)
Server
i
Bitstream B Core Vendor

— | Information

Accounting
Database

Design

Database

Chip

FIGURE 7

> Information
Database




Patent Application Publication Dec. 26,2002 Sheet 8 of 11

US 2002/0199110 A1

FIGURE 9

Encrypted Trusted CAD . | Encrypted
Core Software ¥| Bitstream
+
Copyright
Information
Encrypted
Core
- TEP Secret
User Design o | Information
Files
FIGURE 8
Encrypted Trusted .| FPGA Non-Volatile
Bitstream + > Programming o Memory
Copyright Software TEP
Information Secret
Information
- TEP Secret
User License Information
Files el



Patent Application Publication Dec. 26,2002 Sheet 9 of 11 US 2002/0199110 A1

IV

User Key

User ID [Optionalj

Bitstream Checksum [Optional]

Header Checksum
Encrypted with

FPGA Key
FIGURE 10
v
Copyright Information
Bitstream Information
Bitstream Checksum
Encrypted with
User Key

FIGURE 11



Patent Application Publication Dec. 26,2002 Sheet 10 of 11 US 2002/0199110 A1

v

User_id

Bitstream Checksum

Bitstream Header Checksum

Encrypted with

User Key
FIGURE 12
FPGA - Non-Volatile
Chip_key . Memory
Chip_identifier
User_key . Header
User_identifier
? ¢ Bitstream
Header
Cryptography P
and N
. Encrypted
Cf)nﬁ_guranon »| | Bitstream
Circuitry -
FPGA Customer
Server ? ¢
User Logic
New Bitstream K’
Header
New Encrypted
Bitstream
FPGA Customer Network Equipment
Facility containing FPGA

at end-user location

FIGURE 13



Patent Application Publication Dec. 26,2002 Sheet 11 of 11 US 2002/0199110 A1

TEP Server Customer Server

Customer Header

FIGURE 14 Customer Bitstream
Header

Encrypted with Customer_key
TEP_Header
TEP Bitstream Header > TEP_Header
TEP Bitstr:
TEP Bitstream Header oo
TEP Bitstream
Network
Network
End User
Server Equipment
Containing
EPGA
User Bitstream Header
Encrypted with User_Key FPGA
Customer_Header —_—T
—p
Customer Bitstream
Header
Encrypted with Customer_key
TEP Header Non-Volatile
Memory
TEP Bitstream Header
User
Header
Oid
Bitstream
Header
Network Old
TEP Bitstream .
Bitstream




US 2002/0199110 A1

METHOD OF PROTECTING INTELLECTUAL
PROPERTY CORES ON FIELD PROGRAMMABLE
GATE ARRAY

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims priority to United Kingdom
patent application GB 0114317.1, filed Jun. 13, 2001, which
is incorporated by reference along with all references cited
in this application.

BACKGROUND OF THE INVENTION

[0002] This invention relates to programmable integrated
circuits such as field programmable gate arrays (FPGAs) the
invention provides cryptographic personalization for such
devices so that programming information must be custom-
ized individually for each device and proposes novel busi-
ness models based on this personalization.

[0003] FPGA user designs are converted by computer
aided design (CAD) implementation software into so called
“bitstream” files which can be loaded onto the chips and
program the electrical switches to create the desired circuit.
In the prior art approach each FPGA of the same type will
accept the same bitstream file so that a user can configure an
unlimited number of FPGAs with the bitstream information
from their design. This configuration paradigm is obvious,
simple and easy to implement, and has many advantages.
From the point of view of the FPGA vendor it is a “pay per
use” model since even though a bitstream will run on an
unlimited number of FPGAs the FPGAs themselves must be
purchased individually. Today, in the FPGA market chips
which will load a particular bitstream are, in general, only
available from a single supplier. This model for distributing
FPGA bitstreams is similar to the standard paradigm for
software distribution to personal computers where a pro-
gram file can be installed and run on any computer with the
correct processor, operating system, and resources.

[0004] Recently, improvements in process technology and
device architecture have allowed very large circuits to be
implemented on FPGAs. FPGAs can now implement
designs with the equivalent of several million gates of logic
and medium sized memory blocks. FPGAs with on board
microcontrollers, implemented either directly in silicon or
on the FPGA resources are also becoming available. In fact,
FPGAs or configurable system on chip (CSoC) parts from
companies such as Xilinx, Altera, and Triscend are becom-
ing “platforms” for implementing entire systems rather than
just “glue” logic blocks. Technical information on these
products is available from the internet sites of the manufac-
turers (www.xilinx.com, www.altera.com, and www.tri-
scend.com).

[0005] This trend to implement entire systems on an
FPGA is creating a market for intellectual property “cores.”
These are designs created by third parties and are sold to
FPGA users to incorporate in their own designs. Examples
of cores include, bus interfaces such as the PCI bus, signal
processing functions such as Viterbi and Reed Solomon
decoders and communications interface functions such as
serializer/deserializer (SERDES). Leading FPGA manufac-
turers now offer access to a large catalogue of these “cores”
and customers expect to be able to create a large part of the

Dec. 26, 2002

functionality of their system using “cores”-thus reducing
their time to market and engineering effort.

[0006] An important difficulty for the FPGA core industry
is that there is no way for a core vendor to monitor how
many times their core has been configured into an FPGA by
a particular customer. For this reason it is common for
third-party core vendors to have a one time “license” charge
to access the design files rather than a “per use” charge. This
is an undesirable business model since it means that a
customer with a small-volume application must pay the
same license fee as a customer who will sell millions of
units. Further, customers have to pay the entire license fee
“up front” long before obtaining revenue from product sales.
Customers might be willing to pay much more for intellec-
tual property if the charges were a fraction of their own sales
rather than a fixed up-front charge.

[0007] In order to make a return on the engineering time
invested the core vendors are forced to charge high fees to
access the core—which has the effect of pricing the core
beyond the reach of users with low volume applications.
Unfortunately, FPGAs have the greatest market advantage
over mask-programmed application specific integrated cir-
cuits (ASICs) in low volume applications. This poor match
between market requirements and the license fee business
model has deterred companies from entering the FPGA 1P
core market and, at present, a high percentage of the
available cores are in fact supplied by the FPGA vendors—
either free of charge or for nominal fees—in order to
stimulate chip sales. As FPGA chip sizes continue to
increase it will become impossible for FPGA vendors to
provide all the necessary cores. It is in everyone’s interest:
FPGA customers, FPGA vendors, and third party IP suppli-
ers to find a business model by which core vendors can
receive “per-use” payments for their intellectual property in
order to create a viable market for IP cores.

[0008] Recently, a new class of companies has emerged
offering “silicon intellectual property” or silicon IP. Silicon
IP are “cores” which are implemented in silicon within
application specific integrated circuits unlike the cores dis-
cussed above which are implemented within user designs for
FPGAs. Some vendors, such as Adaptive Silicon, are offer-
ing silicon IP cores which implement FPGA functions. Such
cores are used to increase the range of application of a large
system on chip (SoC) ASIC and to allow flexibility through
in-the-field reconfiguration. Like traditional FPGA compa-
nies this class of silicon IP provider must also address the
need for IP cores for use in user designs targeted at its
architecture. However, unlike FPGA manufacturers Silicon
IP companies do not manufacture the chips that contain their
design themselves and generally receive the majority of their
revenue from licensing fees rather than royalties on each
chip containing their silicon cores. Silicon IP vendors face
the same kind of pressure on revenue as FPGA core.

[0009] When a customer compares the price of an FPGA
against that of an ASIC implementing the same function in
general the FPGA will cost significantly more per unit and
offer less performance. The reason for this is that the
programmable switches in an FPGA and their associated
control memory require considerable silicon area and the
programmable switches add resistance and capacitance
compared with metal interconnect in an ASIC. This addi-
tional cost is particularly obvious in the case of silicon IP,



US 2002/0199110 A1

since a silicon IP customer is building an ASIC and has the
choice of implementing the function in hardwired ASIC
gates. Most customers for FPGA chips cannot access ASIC
technology whatever its unit cost and performance advan-
tages because their applications do not have high enough
volume to justify the high non-recurring engineering (NRE)
tooling charges involved.

[0010] The benefit of the FPGA comes when it is recon-
figured in the field to upgrade products or correct design
errors. Benefit also arises when the FPGA core on a system
chip is used to customize the chip and increase its range of
application by loading different designs into different chips.
If a method was available by which an FPGA or FPGA
silicon IP vendor could make a per-unit charge to customers
for configuring the design in the field or for loading different
designs into the FPGA silicon IP core on a particular system
chip as well as conventional license fees for the core itself
they could build a much more attractive business while
reducing the perceived cost advantage of implementing
logic directly in ASIC.

[0011] The need to obtain revenue and control reconfigu-
ration after the initial manufacture of a product containing
an FPGA or SoC chip with an FPGA core is reinforced by
the trend in high-volume consumer applications to supply
equipment at or below cost in order to lock the consumer in
to subsequent service sales (for example in the case of a
cellular telephone) or software sales (for example in the case
of a games console). In this model there is intense price
pressure on the initial component costs-since the initial
equipment sale does not generate revenue. However, sub-
sequent software and service sales are highly profitable and
FPGA manufacturers and silicon IP core vendors may have
less trouble obtaining fees for facilitating and controlling
access to this market.

SUMMARY OF THE INVENTION

[0012] This invention provides techniques to protect intel-
lectual property cores on field programmable gate arrays. An
approach is to associate each field programmable gate array,
or a limited number of field programmable gate arrays, with
a secret key. Each field programmable gate array may only
be properly configured or programmed by an appropriate
encrypted bitstream (which includes one or more intellectual
property cores). This encrypted bitstream has been encoded
by or for the secret key associated with a particular FPGA.
Other techniques are also presented in this application and
include network-based, nonnetwork-based, software-based,
layered, and other approaches. The techniques allow an
intellectual property core vendor to charge a customer
per-use or per-configuration of their intellectual property.
This is because an encrypted bitstream is useable only in a
limited number, possibly just one, of the integrated circuits.

[0013] In an embodiment, the invention is a method
including manufacturing field programmable gate array inte-
grated circuits, each integrated circuit having an identifica-
tion code and a secret cryptographic key. The method further
includes creating a database of identification codes and
secret cryptographic keys, where a field programmable gate
array integrated circuit with a particular identification code
is configurable using a bitstream encrypted using a secret
cryptographic key associated with the particular identifica-
tion code.

Dec. 26, 2002

[0014] Each field programmable gate array integrated cir-
cuit may have a unique identification code. The database
may be stored on a computer-readable medium. For
example, the medium may be a magnetic or optical disk. The
identification code and secret cryptographic key may be
imprinted on each field programmable gate array using a
laser. The identification code may have at least 64 bits. The
secret cryptographic key may have at least 128 bits.

[0015] In an embodiment, the invention is a method
including receiving an identification code of a program-
mable integrated circuit, obtaining an encryption key asso-
ciated with the identification code, and encrypting a bit-
stream file using the encryption key into an encrypted
bitstream. The encrypted bitstream is provided, where the
encrypted bitstream may be used to configure the program-
mable integrated circuit with a design as specified in the
bitstream file.

[0016] Furthermore, a transaction fee may be deducted
from an account of a customer purchasing the encrypted
bitstream. An account of a provider of the bitstream file may
be credited. The identification code of the programmable
integrated circuit may be determined by accessing a JTAG
interface of the programmable integrated circuit. The pro-
grammable integrated circuit may be an FPGA. Obtaining
an encryption key may include looking up in a database an
encryption key associated with the identification code.
Obtaining an encryption key may include generating the
encryption key using the identification code. Obtaining an
encryption key may include loading an encrypted header file
into the programmable integrated circuit. The bitstream file
may include IP cores of two or more IP core vendors and the
method further includes crediting accounts of the two or
more IP core vendors.

[0017] In another embodiment, the invention is a method
including receiving a request over a network from a cus-
tomer to purchase an IP core for a field programmable gate
array integrated circuit. The customer is charged a price for
the IP core. An identification code is obtained for the field
programmable gate array integrated circuit. An encrypted
bitstream including the IP core is sent over the network,
where the encrypted bitstream may be used to configure the
field programmable gate array integrated circuit with the
identification code.

[0018] The network may include the Internet, wireless
data transfer, optical data transfer, telephone line data trans-
fer, or modem data transfer. The identification code may be
obtained through a JTAG interface of the field program-
mable gate array integrated circuit. The identification code
may be unique to the field programmable gate array inte-
grated circuit.

[0019] In an embodiment, the invention is a method
including receiving a request over a network from a cus-
tomer to purchase a design file for configuring a field
programmable gate array integrated circuit, where the
design file comprises one or more IP cores. The customer is
charged a price for the design file. An identification code is
obtained for the field programmable gate array integrated
circuit. An encrypted bitstream for the design file is sent over
the network, where the encrypted bitstream may be used to
configure the field programmable gate array integrated cir-
cuit with the identification code.

[0020] In an embodiment, the invention is a method
including receiving a first encrypted bitstream file, which



US 2002/0199110 A1

may not be directly used to configure a field programmable
gate array, and decrypting and reencrypting the first
encrypted bitstream into a second encrypted bitstream file,
which may be used to directly configure the field program-
mable gate array.

[0021] In an embodiment, the invention is a method
including: loading and decrypting a first encrypted header in
a field programmable gate array using a first key; determin-
ing a second key stored in the first encrypted header; loading
and decrypting a second encrypted header into the field
programmable gate array using the second key; determining
a first user identification code stored in the second encrypted
header; comparing the first user identification code stored in
the second encrypted header against a second user identifi-
cation code stored on the field programmable gate array; if
the first and second user identification codes match, loading
and decrypting a third encrypted header using the second
key; and configuring the field programmable gate array with
bitstream information stored in the third encrypted header if
a first checksum stored in the third encrypted header
matches a second checksum stored in the second encrypted
header.

[0022] It is an aspect of this invention to radically alter the
present business models of the FPGA industry by providing
a cryptographically supported method for configuring
FPGAs in which the FPGA manufacturer or another trusted
agency maintains control of the bitstream supplied to each
individual FPGA chip and it is not possible to use a bitstream
generated for one chip to configure an unlimited number of
other chips.

[0023] A further aspect of this invention is to provide a
method for intellectual property core vendors to obtain
per-use licensing revenues for cores configured into FPGA
chips.

[0024] A further aspect of the invention is to allow intel-
lectual property cores to contain other intellectual property
cores and allow the individual core owners to obtain license
revenue whenever their core is used.

[0025] A further aspect of the invention is to provide a
means by which FPGA manufacturers can obtain additional
revenue every time the configuration of an FPGA chip is
altered, for example by field upgrades.

[0026] A further aspect of the invention is to allow design
houses to provide and sell complete FPGA bitstreams which
implement a desired function and to obtain per-use license
revenue for these “virtual application specific standard prod-
ucts” (VASSPs).

[0027] A further aspect of the invention is to allow FPGA
vendors or trusted external parties to obtain revenue by
administrating a market in IP cores and collecting account-
ing data on the usage of various cores by customers.

[0028] A further aspect of the invention is to protect
confidential design information and prevent reverse engi-
neering and removal of copyright protection mechanisms
from design source files.

[0029] A further aspect of the invention is to allow FPGA
manufacturers, companies who provide FPGA cores for use
in ASICs and users of FPGAs or FPGA cores to prevent
unauthorized third parties from creating bitstreams to recon-
figure FPGAs in equipment in the field.

Dec. 26, 2002

[0030] A further aspect of the invention is to provide
cryptographic support for a pricing model under which
FPGA vendors reduce the up front cost of their chips or
license fees for their silicon-IP cores in order to better
compete with mask-programmed ASIC technology on cost
and compensate for this revenue by making charges for each
time devices are configured.

[0031] A further aspect of this invention is to provide this
security with a minimum of inconvenience to the parties
involved in the transaction.

[0032] Advantages of this method of securing intellectual
property include:

[0033] Core vendors do not have to disclose their design
to competitors or end-users.

[0034] Tt is straightforward to support designs which use
multiple cores from several vendors.

[0035] FPGA manufacturers can be sure that any cores
they supply free of charge can only be used with their own
chips.

[0036] FPGA manufacturers are provided with an addi-
tional revenue stream.

[0037] Customers only pay for intellectual property when
they actually manufacture products, thus there is no business
risk in paying large up front license fees for intellectual
property before it is known what the market demand for the
product will be.

[0038] Cores can be evaluated risk free.

[0039] Small companies with limited budgets and low
volume applications can make use of intellectual property
cores.

[0040] Other objects, features, and advantages of the
present invention will become apparent upon consideration
of the following detailed description and the accompanying
drawings, in which like reference designations represent like
features throughout the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] FIG.1 shows a conventional business relationships
among parties involved in designing and using FPGAs.

[0042] FIG. 2 shows a set of business relationships among
parties involved in designing and using FPGAs according to
this invention.

[0043] FIG. 3 shows input and output information for
prior-art core-generator software.

[0044] FIG. 4 shows the relationship between the FPGA
designer’s computer and the Trusted External Party’s server
in a network based embodiment of this invention.

[0045] FIG. 5 shows the relationship between the FPGA
vendor’s computer and the Trusted External Party’s server in
a network based embodiment of this invention.

[0046] FIG. 6 shows the relationship between the Trusted
External Party’s server and the FPGA customer’s computer
in a network based embodiment of this invention.

[0047] FIG. 7 shows various databases maintained on the
Trusted External Party’s server.



US 2002/0199110 A1

[0048] FIG. 8 shows the design implementation software
in an embodiment of the invention based on trusted soft-
ware.

[0049] FIG. 9 shows the configuration software in an
embodiment of the invention based on trusted software.

[0050] FIG. 10 shows FPGA header information accord-
ing to an embodiment of the invention.

[0051] FIG. 11 shows FPGA bitstream information
according to an embodiment of the invention.

[0052] FIG. 12 shows FPGA bitstream header information
according to an embodiment of the invention.

[0053] FIG. 13 shows download of bitstream information
to an FPGA in the field according to an embodiment of the
invention.

[0054] FIG. 14 shows layered encryption used to secure
download of bitstream information to an FPGA in the field
according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0055] Aspects of the invention disclosed in this applica-
tion are related to the applicant’s copending applications GB
9930145.9 and U.S. patent application Nos. 60/181,118 and
09/747,759, “Method and Apparatus for Secure Configura-
tion of a Field Programmable Gate Array,” and GB
0002829.0 and U.S. patent application Ser. No. 09/780,681,
“Method of Using a Mask Programmed Key to Securely
Configure a Field Programmable Gate Array,” which are
incorporated by reference.

[0056] The invention makes use of cryptographic tech-
niques disclosed in the applicants copending patent appli-
cations and in standard textbooks on cryptography including
“Applied Cryptography, 2nd Edition” by Bruce Schneier
ISBN 0-471-12845-7, published by John Wylie and Sons,
1996 which is incorporated by reference. Aspects of the
cryptographic protocols covered by these documents are
described only briefly here. In this application reference is
made to “encryption,”“public key encryption,”“cipher block
chaining” and cryptographic hash functions, these topics are
covered in detail in the Schneier textbook and the appli-
cant’s earlier patent applications cited above. Many algo-
rithms are presented in the literature which can implement
these functions effectively and the techniques described here
are not limited to a particular algorithm choice. For example,
encryption may be implemented using the triple-DES algo-
rithm or Rijndael algorithm (see “The Rijndael Algorithm:
AES Proposal,” First AES Candidate Conference (AES 1),
Aug. 20-22, 1998), public key encryption may be imple-
mented using the RSA algorithm and cryptographic hash
may be implemented using the MD5 algorithm.

[0057] Parties to the IP Transaction

[0058] Before discussing IP security schemes in detail it is
worth defining the various parties involved in more detail.
FIG. 1 shows an abstract and simplified model of the
relationships between the various parties in a conventional
business model which is helpful in understanding the secu-
rity requirements. FIG. 2 shows an abstract and simplified
model of the relationships between the parties according to
the present invention.

Dec. 26, 2002

[0059] The “End User”—purchases equipment containing
FPGAs. The end user may become a participant in the
licensing process if the equipment allows downloading new
designs into the FPGA after the equipment is delivered to the
user. Other parties in the process may wish to limit the end
users ability to “clone” equipment by copying the FPGA
bitstream file or to replace the FPGA design with one which
changes the equipment’s functionality. For example, in the
case of a cellular telephone containing an FPGA the user
might wish to reconfigure the FPGA to avoid service
charges.

[0060] The “FPGA Customer”—designs and manufac-
tures equipment which uses FPGAs. To do this the customer
requires bitstream files for “user designs” which when
loaded onto the FPGA cause it to perform the desired
functions in the equipment. These “user designs” may
include intellectual property blocks or “cores” which imple-
ment a portion of the required function.

[0061] The “Designer”—creates a complete design for an
FPGA chip. The design may make use of one or more “IP
cores” purchased from Core vendors or obtained from the
FPGA vendor. The design can be converted into a bitstream
file for the FPGA chip using the FPGA vendor’s implemen-
tation software. Normally the “Designer” and “Customer”
are the same organization but there is no reason why this
should always be the case and so for the purpose of
describing the protocols it is helpful to separate the two
roles.

[0062] The “Core Vendor”—designs intellectual property
cores for resale. These cores may be provided as hardware
description language (HDL) files, or in another suitable
format such as a netlist and timing constraints for a particu-
lar FPGA manufacturer’s computer aided design (CAD)
tools. Core vendors normally also supply substantial docu-
mentation and test sets for their design. Core vendors may
sell direct to the “Designer” or may have a marketing
agreement for the FPGA vendor to distribute their product.
Even if customers purchase directly from the core vendor
they are likely to find out about the core through the FPGA
vendors web-site where there will be a comprehensive
catalogue of cores which work with the vendors FPGA
chips. FPGA vendors also generally provide intellectual
property (IP) cores which can be incorporated in customer
designs for their chips. These include simple functions such
as adders and multipliers which are generally provided free
of charge and more complex functions such as PCI bus to
interfaces which are provided for a substantial fee. In some
cases FPGA vendors license and resell cores from third party
core vendors.

[0063] The “FPGA Vendor”—designs and manufactures
FPGA chips.

[0064] The “CAD Software Vendor’—designs and sells
CAD software tools. These include “Implementation Tools™
which map netlists describing user designs into bitstreams
which can program FPGAs. Implementation tools include
place and route and bitstream generation tools. The complete
design flow also requires higher level synthesis and simu-
lation tools. Today, implementation tools for a given FPGA
are generally only available from the FPGA vendor. There is
a general trend for FPGA companies to provide more and
more of the complete tool flow. For the purposes of our
model we have separated the functions of software vendor



US 2002/0199110 A1

and FPGA vendor because marketplace dynamics may well
force a separation of the functions in the future.

[0065] The “Trusted External Party (TEP)"—or “trusted
third party” is an organization which all parties to the
transaction are willing to trust to behave fairly. Trusted third
parties are common in cryptographic protocols—for
example certification authorities sign public keys issued by
websites to indicate that the organization issuing the key is
actually entitled to use it. As an example when one visits
Amazon’s website and wishes to buy a book and needs to set
up a secure connection to transfer a credit card number it is
a certification authority such as Verisign corporation that
guarantees that the public key obtained from the website
which purports to be that of amazon.com actually is from
amazon.com. In the context of FPGAs, the FPGA vendor is
likely to act as the trusted external party since they will have
existing business relationships with all the parties to the
transaction. However, since the trusted third party role is a
distinct one and need not be fulfilled by the FPGA vendor it
makes sense to describe the protocols as if the trusted third
party is a separate organization.

[0066] The FPGA Design Process

[0067] FIG. 1 shows the relationship between the parties
in a conventional FPGA business model and design flow. In
this case there is no trusted external party and FPGA
bitstreams are transferred directly between designer and
FPGA customer (who are normally within the same orga-
nization) and the bitstream can configure any FPGA of the
correct type.

[0068] FIG. 2 shows a novel business model of the present
invention in which a trusted external party is involved in
bitstream creation. In this model core vendors turn over
sensitive information about their intellectual property to the
trusted third party rather than the FPGA designer. The
trusted third party manages compilation of the overall design
to create bitstream information. In this model FPGA chips
require customized bitstreams and the trusted external party
(TEP) is requested by the FPGA customer to create bit-
streams for each FPGA chip. Thus the trusted third party can
collect accounting data about how many chips a given IP
core has been programmed into by a given customer and also
how many times a given FPGA has been configured.

[0069] Where a user design incorporates one or more
“cores” or design elements from third party vendors or the
FPGA chip vendor problems arise in protecting intellectual
property. FIG. 3 shows a simplified model of “core genera-
tor” software supplied by core vendors and accessed by the
designer. Normally, the user will run CAD tools provided by
the FPGA vendor to create a bitstream from high level
design files. However, core vendors may not wish to provide
complete design files to the user—since this would allow the
user to modify the vendor’s core and circumvent any copy
protection mechanisms. Instead core vendors may choose to
provide behavioral simulation models for their core which
allow for design verification but not implementation or
“encrypted” cores which can be processed by CAD tools but
cannot be easily viewed or modified by the user. Altera
Corporation, a major vendor of FPGAs, provides encrypted
cores for evaluation purposes, these cores can be simulated
to make sure they have the desired functionality but they
cannot be used to generate bitstreams and the source code
cannot be viewed. Once the user buys a license to use the

Dec. 26, 2002

core the unencrypted data is provided. This system is
described in the application note “Evaluating AMPP and
MegaCore Functions,” AN-125, April 2000, available from
Altera Corporation. The design flow for another commer-
cially important core generator product is described in “Core
Generator™ System 2.11 User Guide” dated 1999 and
available from Xilinx Corporation. Both these documents
are incorporated by reference.

[0070] At some point a complete bitstream for the entire
design including all the cores must be created. To achieve
this all design files, including those relating to bought in
cores must be presented to the CAD tools-however the
various parties to the design may not trust each other. For
example, if the user is to run the CAD tools to create the final
bitstream they must have complete design files from all the
core vendors-and core vendors might worry that the user
would circumvent their copyright protection mechanisms. If
a core vendor is to run the CAD tools then the user must
supply the core vendor with design files for their section of
the design, and, if there is more than one core involved the
vendors of the other cores would need to supply their
competitor with their own design information. Where FPGA
vendors offer their own cores directly to customers, FPGA
users and independent core vendors may not wish to give the
FPGA vendor design information.

[0071] One way to resolve this problem, shown generally
in FIG. 2, is for a trusted external party (TEP) to receive
design information from all parties, run the implementation
tools and take responsibility for bitstream generation.
Although some parties may prefer not to disclose design
information to the FPGA vendor there are practical reasons
for the FPGA vendor adopting this role. Firstly, they will
likely have a business relationship with all the core vendors
through cooperative marketing arrangements as well as with
the FPGA user. Also, FPGA vendors develop the majority of
the CAD software needed to program their products in house
and are thus well placed to modify the CAD flow. FPGA
users and core vendors, in fact, already trust the FPGA
vendor with their intellectual property in that they regularly
process it through software tools developed by the FPGA
vendor. Finally, FPGA vendors are large and financially
stable organizations. In the ASIC world, organizations like
the Virtual Component Exchange have recently emerged to
facilitate trading IP by providing standard contracts and an
electronic trading floor. It is possible that organizations
might eventually become TEPs for FPGA IP cores.

[0072] In this model the core vendors and the FPGA user
supply design information to the trusted external party who
then runs CAD tools to create a final bitstream for the
complete design. An attractive way to offer such a service is
via servers on the TEP’s internet site. Using a client-server
model the FPGA vendor can run elements of their CAD suite
on their own servers rather than on the customers computer
transparently via the internet. Today almost all FPGA cus-
tomers and designers use computers with a high bandwidth
internet connection. FPGA design tools are becoming
increasing reliant on having a continuous connection to the
internet available to provide help information and software
patches. Today, a commercial “Application Service Pro-
vider” (ASP) service called Toolwire (www.toolwire.com)
offers access via the internet to logic synthesis tools for
FPGAs and Xilinx’s “WebFitter” product as described on
their website (www.xilinx.com) provides free online access



US 2002/0199110 A1

via the internet to a fitting tool for its complex program-
mable logic device (CPLD) products running on Xilinx’s
Servers.

[0073] Using this client-server technique the FPGA ven-
dor can create a nonencrypted FPGA bitstream file and store
it locally. This can be done without core vendors disclosing
design information either to each other or to the end-
customer. However, if the standard non-encrypted bitstream
file is then supplied to the end customer there is nothing to
prevent them configuring an unlimited number of FPGA
chips with the design. What is needed is a cryptographic
technique to allow per-use royalty collection on the final
bitstream.

[0074] Pay Per-Use Configuration

[0075] In order to protect FPGA bitstreams from pirates
who simply copy bitstream files and use them to create
“cloned” products several cryptographic techniques have
been devised by the assignee of the present invention. The
problem of enforcing a pay per-use scheme for FPGA
designs is similar in that it must also ensure that a configu-
ration file created for one FPGA chip cannot be used to
configure many chips. However, an important difference is
that the cryptographic protection is intended to restrict the
actions of the FPGA designer and the FPGA customer rather
than a pirate.

[0076] Cryptographic schemes are generally based on
secret information (“keys”) which in this case must be stored
on the FPGA chip itself. Anyone who knows the crypto-
graphic key on which the security scheme is based will, in
general, be able to defeat the scheme. In the case of an FPGA
bitstream created from several cores provided by third
parties, some library elements provided by the FPGA manu-
facturer and design elements created by the FPGA customer
access to keys is an important issue. As noted above the
FPGA customer may not want their design to be accessed by
core companies and core companies may not want their
designs to be accessed by their competitors or the FPGA
customer. One solution would be to have several keys all of
which had to be present to “unlock” the design or to protect
different parts of the design with different keys. A simpler
solution is for a TEP to secure the design with a key known
only to itself. A practical benefit of this approach is that the
FPGA manufacturer can easily embed a secret key into the
FPGA chips during the fabrication or test process on behalf
of the TEP whereas core vendors will normally never have
the chips in their possession.

[0077] One scheme for providing encryption support for a
pay per use scheme for FPGA intellectual property cores
involves the FPGA manufacturer implanting a unique iden-
tification code and secret cryptographic key in each chip
during manufacture on behalf of a trusted external party
(TEP). This could be done using a laser to cut specially
provided metal wire segments. For example a cut wire
segment would not conduct current and could be considered
as a “0” and an uncut wire segment as a logic “1.” An array
of these segments could represent a binary number such as
a cryptographic key or serial number. The TEP can maintain
a database of chip identification codes and their associated
secret keys. The amount of disk space required to store this
data is minimal: assume that 10 million chips a year are sold
and a 64-bit (8 byte) identification code and 128 bit (16 byte)
secret key are embedded on each chip for a total of 24 bytes

Dec. 26, 2002

of data per chip-then 240M bytes of disk space are required
to store the information. Today, 40G byte hard disks are
available at low cost. In fact, on a high end PC, it would be
quite practical to store the entire database in DRAM
memory to allow very high speed access.

[0078] Recent FPGAs have been provided with a Joint
Test Action Group (JTAG) serial interface for testing and
configuration purposes. JTAG is standardized by the Insti-
tute of Electrical and Electronic Engineers as IEEE standard
1149.1. JTAG allows for data to be sent to the FPGA and
also for data in registers within the FPGA to be read out.
JTAG is flexible enough to allow complex interactions
between a computer and the FPGA. In the context of this
configuration scheme, during manufacturing, the JTAG
interface on the FPGA is connected to a computer which is
itself connected to the internet. Many other configuration
interfaces to FPGAs apart from JTAG have been suggested
and are in use: while JTAG is an attractive option it will be
obvious to one skilled in the art that the techniques described
here could be used with other kinds of interface to the
FPGA. Software on the computer communicates with the
FPGA manufacturer’s servers. The FPGA customer provides
information to the software to allow identification for billing
purposes, they also provide information to the software to
allow the correct design bitstream file to be identified.

[0079] Each time an FPGA is to be configured the com-
puter accesses it via the JTAG interface to determine its
identification number. It then sends a request to the TEP’s
server with the FPGA identification number, billing infor-
mation for the FPGA customer and identification of the
design to be downloaded. The TEP’s server then looks up
the correct encryption key for that particular FPGA chip in
its database, encrypts the bitstream file appropriately, and
supplies the encrypted bitstream to the customer’s computer
for downloading into the FPGA. This transaction results in
a charge to the customer which includes license fees for any
cores included in the bitstream and any service charges from
the TEP. The TEP’s server updates the customer’s account
information with the transaction details and also credits the
accounts of the core vendors.

[0080] It will be apparent to one skilled in the art that there
are several alternative schemes for collecting accounting
data for the configuration of a core into the FPGA once the
basic cryptographic support is in place. For example the user
computer may contact core vendor systems directly to obtain
authorization codes to use cores in the design. These codes
could give permission to use the core once or many times.
The authorization codes could be presented to the TEP at the
time of bitstream generation. Another alternative is that the
TEP itself buys licenses to use the cores in volume and acts
as a distributor selling them on to its customers.

[0081] Since the FPGA bitstream is encrypted with a
secret key known only to the FPGA chip and the TEP, the
customer cannot decrypt the bitstream to determine the
design information. Further, the bitstream supplied to the
customer will only correctly configure a single FPGA. Thus
the customer must purchase a new bitstream for each FPGA
chip he wishes to configure with the design and hence pay
for each use of any intellectual property cores included in the
bitstream.

[0082] Pay Per-Configuration

[0083] A further advantage for the FPGA manufacturer of
taking control of configuration is that it gives them more



US 2002/0199110 A1

flexibility in component pricing since they can also obtain
revenue every time the chip is configured. FPGA chips, in
general cost much more to manufacture than ASICs of
equivalent density, because of the area overhead of program-
ming circuitry. The advantage of FPGAs is that they allow
the possibility of upgrading designs in the field and can be
used without paying high up-front tooling charges which are
required for mask programmed parts.

[0084] The ability to charge for configuring FPGAs as
well as the silicon itself allows FPGA vendors to match their
charges with the benefits of the technology. For example,
they could choose to reduce the price of the chips themselves
but charge for each time they are configured. FPGA manu-
facturers already offer “low cost” product ranges targeted at
high volume applications. An attractive option is to intro-
duce a low cost product range with enforced pay-per-
configuration where the “full-price” product range has a
standard configuration mechanism. As well as “pay-per-
configuration” to reflect the benefit of re-configuration in the
field it is also possible to “pay-per-design” to reflect the
benefit of the product customization and inventory manage-
ment offered by programmable parts.

[0085] This low cost product range would reduce the
initial cost advantage of ASIC technology making it more
likely that FPGAs would be deployed. If a customer then
needed to upgrade their products in the field the FPGA
vendor could make an additional charge for this. The ability
to charge for configuration will be of particular advantage to
emerging companies who sell FPGA technology as “Silicon
IP”—that is as an intellectual property core which can be
included on larger “system chips” designed by their cus-
tomers—rather than producing FPGA chips themselves.

[0086] Network-Based IP Protection

[0087] In a first detailed embodiment of this invention a
simple network based scheme is provided under which a
TEP acts to facilitate “pay-per-use” revenue collection on
intellectual property cores.

[0088] In this scheme the core vendor creates a “core
generator” application which is hosted by the TEP on a
server computer accessible via a network. Preferably, the
core generator is accessed by the designer via a web page
and the server computer is connected to the internet. Docu-
ments describing conventional core generator software from
the leading FPGA vendors Xilinx and Altera were refer-
enced above. The core generator is accessed by the user who
enters any required design parameters (for example, bus
widths for a bus interface core). The user identifies them-
selves to the core generator by means of a username and
password and a secure connection is created between the
user’s computer and the website. The website then supplies
design information to the user including simulation files for
the core, documentation and code to instance the core in an
HDL design. Sensitive design information such as netlist
files created by the core generator are not supplied to the
user but are retained by the TEP.

[0089] Based on the information supplied the user can
complete and verify their design at the logical level using
simulation. When they wish to generate a complete FPGA
configuration for the design they run the FPGA manufac-
turer’s implementation tools. However, the necessary files to
actually create the core on an FPGA have not been supplied
to the user, rather they were retained by the trusted third

party.

Dec. 26, 2002

[0090] In another embodiment the core-generator tool is
accessed by the FPGA designer from the core provider’s
website rather than the TEP’s website but the sensitive
design files are transferred by the core provider either
immediately or at a later time to the TEP’s server rather than
sent to the FPGA designer.

[0091] 1In a first component of this scheme shown gener-
ally in FIG. 4 the implementation tools interact with the TEP
via a network. Conveniently, the interaction takes place over
the internet and standard security protocols such as secure
sockets layer (SSL) are used to protect information as it
passes between the computers. When the designer runs the
FPGA vendor’s CAD tools information on their section of
the design are supplied to the TEP’s computer which then
combines them with the information from the various core
vendors to create a complete design. The resulting timing
information and log report files are provided to the user but
the bitstream file is held in a design database on the TEP’s
server computer. The designer is supplied with an identifier
which allows the design information to be located on the
TEP’s server. As well as the bitstream file the design
information stored in the TEP server includes a list of all
licensed cores used in the design and details of any FPGA
designers and FPGA customers allowed to access the design.

[0092] In a second component of this scheme shown
generally in FIG. 5 the FPGA manufacturer interacts with
the TEP. This interaction occurs during chip production and
is independent of the interaction between the TEP and the
FPGA designer. The purpose of this interaction is to estab-
lish a shared secret between the FPGA chips and the TEP’s
server allowing secure communication between the chips
and the TEP after they leave the FPGA manufacturers
facility. In this embodiment each FPGA has on chip non-
volatile memory in which the TEP can store a secret key and
unique chip identification number. The chip will report the
unique chip identification number on request but will not
report the secret key. Many technologies are available to
store small amounts of secret information on an FPGA chip
including antifuse and various forms of EPROM. In this
transaction the TEP can specify a key to be stored in the
FPGA or alternatively the TEP can be told the key selected
by the FPGA manufacturer or information related to the key.
The TEP maintains a chip database on its server allowing it
to find the key for a particular chip based on the chip’s
identification number. The chip’s identification numbers
may be sequential integers but they do not have to be.

[0093] In one embodiment the identification numbers are
64-bit random integers and identification numbers are
screened against a list of previously used numbers to elimi-
nate duplicates before programming them onto the chips. In
another embodiment it is assumed that the number of
possible identification numbers is so large compared with
the number of FPGAs of a particular type manufactured that
duplicates are so unlikely to occur that they are not of
concern. In an embodiment many or all FPGAs have the
same chip key but each has a unique identification number.
In an embodiment the secret key may be embedded in
maskwork to make it very hard to discover whereas the
identification number is embedded using laser programmed
fuses. In an embodiment in order to reduce the number of
laser fusible links or other nonvolatile memory bits required
each FPGA has a unique chip key and calculates an identi-
fication number when required by encrypting a particular



US 2002/0199110 A1

integer (for example 0) using the secret key. In an embodi-
ment the chip key programmed onto the FPGA is created by
encrypting the identification number using triple-DES with
a secret key known to the TEP. This allows the TEP to
determine the key for any given chip based on its identifi-
cation number without maintaining a database.

[0094] In a third component of the scheme shown gener-
ally in FIG. 6, when the FPGA customer wishes to configure
the design into an FPGA they connect the JTAG interface on
the FPGA to a computer, this computer may be part of the
test equipment for checking each manufactured board. The
computer reads out identification information from the
FPGA and opens a connection to the TEP’s server. Conve-
niently, the connection is over the internet and is secured
using the secure sockets layer (SSL) protocol. The secure
connection provides identification of the FPGA Customer to
the TEP and vice versa. Normally, the user would identify
themselves via a username and password and the TEP would
identify itself via a public key certificate signed by a trusted
authority. This identification process is identical to that used
by electronic commerce internet sites and is not discussed
further.

[0095] The computer then passes the FPGA identification
and bitstream identifier to the TEP’s website which looks it
up in a database relating FPGA identification codes to secret
keys stored on the chip during manufacture. In another
embodiment, instead of using a database, the TEP’s com-
puter may calculate the secret key from the identification
number. The TEP then locates the bitstream corresponding
to the bitstream identifier, checks that the FPGA customer is
in fact allowed access to that bitstream, encrypts the bit-
stream with the secret code for that particular FPGA and
sends it through the network to the user’s computer. The
FPGA customer’s computer then supplies the encrypted
bitstream information to the FPGA via JTAG. The FPGA
customer may access the bitstream as it crosses over the
JTAG interface but without knowing the secret key shared
by the FPGA and the TEP it is impossible to decrypt the
bitstream in order to reverse engineer it. Further, the bit-
stream will only work with one FPGA so copying the
bitstream to use with other FPGAs is pointless. The FPGA,
in turn, programs the encrypted data into local nonvolatile
memory-for example, a serial EPROM.

[0096] The scheme above, using JTAG to determine the
FPGAs identification number and using the FPGA to pro-
gram data into an external FLASH memory, is particularly
convenient but one skilled in the art will realize that there are
many ways of finding the chips identification number and
storing the encrypted bitstream. In an embodiment the
FPGA customer computer obtains FPGA identification num-
bers indirectly, for example by scanning barcodes on the
tubes containing the chips to obtain a lot number and
accessing a database of identification numbers provided by
the FPGA manufacturer. In an embodiment the FPGA cus-
tomer programs the encrypted configuration information
into nonvolatile memory directly rather than passing it
through the FPGA chips.

[0097] At this point the FPGA has an encrypted design
which it can load and implement, however, since the design
is encrypted with the key for this particular FPGA and all
FPGAs have different keys the user cannot use the bitstream
file with any other FPGA.

Dec. 26, 2002

[0098] In a fourth component of the scheme shown gen-
erally FIG. 7, the TEP’s computer updates accounting
information each time a bitstream is created for an FPGA
chip. The FPGA customer presents information to the TEP
server identifying the customer, the chip to be programmed
and the design bitstream to be used. The TEP server consults
the design information database to determine which cores
are included in the bitstream supplied and updates the core
vendor accounting database to reflect the royalties payable
to the core vendors and the license charge to the customer.
As well as charging any core vendor royalties to the user
account the FPGA vendor may, of course, charge a fee for
its service in supplying the encrypted bitstream or a royalty
on any of its own cores included in the design. The TEP
server also checks that the customer is allowed to make use
of the design bitstream requested. In an embodiment the TEP
can determine the FPGA type from the chip identifier and
checks that the bitstream is compatible with the particular
FPGA.

[0099] Inanembodiment the TEP checks that the custom-
er’s credit limit is not exceeded before going ahead with the
transaction. In an embodiment the customer buys licenses in
blocks from core vendors and the TEP merely maintains a
count of available licenses for a given core, decrementing
the count each time the core is configured onto an FPGA
rather than collecting license fees. Many additional varia-
tions on the described business relationship between the
TEP, core vendors and customers will be apparent to one
skilled in the art after reading this disclosure and are
intended to fall within the scope of the present invention.

[0100] Trusted Software Based IP Protection

[0101] In the previous embodiment of the invention secu-
rity was obtained by holding secret design information on a
server computer managed by the TEP in order that it was
never accessible by the other parties. While this is an
increasingly viable technique and is likely to be a preferred
technique in the future in the present state of networking
technology there may well be resistance to requiring net-
work connections for critical tasks such as configuring
FPGAs during manufacture. There may also be resistance
from FPGA designers to supplying design information to the
TEP. In the present marketplace IP providers have relatively
weak commercial leverage compared with FPGA designers
and customers so techniques in which designers do not have
to release design files to the TEP are of interest.

[0102] An alternative to using a TEP web server in the IP
licensing scheme is to use trusted software containing TEP
secret information which runs on the FPGA designer’s and
customer’s computers. Software is, in general, vulnerable to
hacking through decompilation and tracing but various
techniques are available to make it more resistant. In addi-
tion hardware devices such as smartcards or tokens provided
by the TEP can be connected to the designer or customer’s
computer to undertake cryptographic tasks and shield secret
information such as cryptographic keys. Nevertheless, use of
secure software rather than the networking architecture of
the first embodiment can be viewed as a trade-off between
absolute security for the IP core providers and TEP against
increased ease of use and security for the FPGA customer
and designer.

[0103] FIG. 8 shows how trusted CAD software can be
used by the designer. Core vendors now supply full infor-



US 2002/0199110 A1

mation for their cores but in an encrypted format. This
prevents the designer from reverse engineering or modifying
the designs but allows the CAD software to process them.
Encrypted design files are, as noted above, already in use by
FPGA suppliers for core evaluation. A detailed description
of one such scheme is provided in U.S. Pat. No. 5,978,476
assigned to Altera Corporation which is incorporated by
reference. An EDIF file representing netlist information for
a core is a normal text file and can simply be encrypted using
a cipher such as DES in cipher block chaining mode-this is
merely an example of one possible scheme. Encryption can
be done by the core vendor prior to supplying the core and
the trusted CAD tools can then decrypt the file. Preferably,
a separate hardware token supplied by the TEP is connected
to the designer’s computer and used to perform the decryp-
tion operations on the CAD file.

[0104] After decrypting any files owned by third parties to
obtain a complete design database the CAD tools can then
create a bitstream file. The bitstream file is also encrypted so
that, although it resides on the designers computer and can
be distributed at will by the designer it is impossible to
reverse engineer design information from it or use it directly
to program FPGAs. In one embodiment, if the CAD tools do
not require to decrypt any design source files they will
assume that the designer has full rights to the design and
compile the design to a standard nonencrypted bitstream.

[0105] In an embodiment, as well as configuration infor-
mation for the FPGA the encrypted bitstream file includes
licensing information for the various cores which were
decrypted. This might include an identifier for the core
vendor, the core name and the number of times it was
instanced in the design, it may also include additional
parametric information for the core since some cores may
have various options which affect the license fee.

[0106] In order to create bitstream information for an
FPGA (as shown in FIG. 9) the FPGA customer requires the
encrypted bitstream file and trusted configuration software
supplied by the TEP. In an embodiment, the trusted software
communicates with the FPGA through its JTAG interface. A
consideration is that the FPGA customer can monitor any
communications across the wires that connect the FPGA to
the customer computer so it is desirable to cryptographically
secure sensitive information like bitstreams as they are
transferred from the trusted software to the FPGA.

[0107] The function of the trusted configuration software
is to convert the encrypted bitstream file from the design
tools into a bitstream file capable of configuring a particular
FPGA and to download the file into the FPGA. The trusted
configuration software contains TEP secret information to
allow it to decrypt the encrypted bitstream file and re-
encrypt it for a particular FPGA. Preferably, for additional
security, the secret information is stored on and encryption
is carried out by a hardware token or smartcard coupled to
the software running on the user computer.

[0108] Since, one goal of this embodiment is not to require
a network communication with the TEP during the configu-
ration process an alternative means of enforcing pay-per-use
licensing is required. The mechanisms required are similar
to those required in equipment like postage meters and
pay-per-view television and analogous to metering of elec-
tricity. One approach is for the customer to pre-buy blocks
of licenses. The trusted software would then manage these

Dec. 26, 2002

licenses decrementing the available license count every time
a chip was programmed and refusing to program chips once
the licenses were exhausted. Various techniques are avail-
able for transferring additional “credit” into the licensing
unit. Alternatively, the software could record license usage
information in a secure fashion and access could be provided
on an occasional basis to allow the information to be
read—either directly from the equipment or via a network.

[0109] Licensing could be done on a per-design basis with
the TEP collecting revenue and distributing it to various core
vendors. This simplifies the process and means that only the
TEP and the customer know which cores are used by the
customer. Alternatively, licenses could be bought on a
per-core basis directly from the core vendor and the TEP
software would check that licenses for all necessary cores
were present. Some designs may contain more than one
“instance” of a particular core and so available license
counts may have to be decremented more once when a chip
is configured. Per-core licensing increases the flexibility
with which a customer with a large number of different
products containing FPGAs can use licenses-since licenses
are not associated with a given design at the point of
purchase. The techniques are not incompatible and there is
no reason why some cores used in a design might be
purchased via the TEP and others directly from the core
vendor.

[0110] Layered Encryption

[0111] In the case where the FPGA manufacturer installs a
key on the chip during manufacture, for example by laser
programming a random number onto the chip they may
prefer not to make any record of the key to reduce the chance
of unauthorized access to key information. The manufac-
turer may also implant a chip identifier which is not secret.
In the subsequent discussion “chip_key” and “chip_identi-
fier” are used to refer to this data embedded.

[0112] 1t would be advantageous, therefore, if the intel-
lectual property protection scheme of this invention could be
implemented on chips which had an on chip secret key to
secure bitstreams but the value of the on-chip secret key was
not known to the TEP.

[0113] This can be done as follows. After concluding test
on a packaged the FPGA manufacturer presents a bitstream
header to the FPGA for encryption using the on chip secret
key. One structure for such a header, after encryption, is
shown in FIG. 10.

[0114] The first field of the header is an initial value (IV).
The IV is used in Cipher Block Chaining encryption to
initialize the feedback loop. Preferably the IV is a random
number created by a random number generator on the
FPGA. The IV need not be kept secret and is output
unencrypted by the FPGA. The use of IVs is specified in
industry standards related to CBC mode encryption and
increases resistance against some forms of cryptanalysis,
CBC mode encryption is covered starting on page 193 of the
Schneier textbook referenced above.

[0115] The second field in the header is a user key
(referred to as user_key). The user key is used to protect the
bitstream information. The second and subsequent fields are
output encrypted in CBC mode using the FPGA’s secret key.

[0116] The third field in the header is optional and is the
user FPGA identifier (referred to as user_identifier). This



US 2002/0199110 A1

field is used in embodiments where the FPGA itself does not
provide a chip_identifier accessible from off chip or where
the format of the chip’s identifier is inconvenient (for
example, if the user wanted a unique incrementing identi-
fication number and the FPGA manufacturer used random
64-bit integers as chip identifiers).

[0117] The fourth field in the header is also optional and
is the bitstream file checksum for the user design to be
protected. This field is useful when it is known at the time
the header is generated what bitstream file is to be protected.

[0118] The fifth field in the header is a cryptographic
checksum. In the preferred embodiment this is a message
authentication code (MAC) generated from the CBC encryp-
tion process (as described on page 456 of the Schneier
textbook cited above). In an alternative embodiment a
separate cryptographic hash function is used to generate the
checksum. The purpose of the fifth field is to allow the
FPGA to check that the header is valid and has not been
tampered with or corrupted.

[0119] Preferably this header file is created while the chip
is on the tester since every time the chip is handled there is
a chance of damaging the package leads. The FPGA chip is
presented with the user_key and optionally the user_identi-
fier and bitstream file checksum (fourth field) via JTAG and
creates the encrypted header file of FIG. 10. In an embodi-
ment the test machine ¢ emulates an external nonvolatile
memory and capture the data so the FPGA acts exactly as if
it was storing a user design securely. Preferably, the FPGA
may be instructed to output the information over JTAG.

[0120] Test happens in the FPGA manufacturer’s secure
facility so there is no problem with unauthorized parties
monitoring the connections transferring secret information
such as the user key to the FPGA. The tester obtains the
encrypted header information output by the FPGA and saves
it in a file along with the chip serial number and the user key
supplied to the FPGA in a separate file which is provided to
the TEP. The chip can now be sold as normal.

[0121] In one embodiment customers receive the
encrypted header file for all the chips they have ordered. The
encrypted header files can only be decrypted by the FPGA
chip that created them and so they do not have to be kept
secret. Header files might be supplied on a CD-ROM or
other electronic media along with the chips or supplied
separately for example as an e-mail. Since the header files
are very small it is quite practical to present many header
files to an FPGA, the FPGA will only react to the correct
header since the others will have incorrect checksums when
decrypted with the FPGA’s key. The fact that many headers
can be presented reduces the matching burden in finding the
right header for a given chip. For example headers for all
chips delivered in the same tube could be presented so there
was no need to track individual chips to find the right header.

[0122] In a preferred embodiment the customer reads the
chip_identifier via the JTAG interface once the chip is
installed on a printed circuit board. The customer then
requests the header file from the TEP’s web server corre-
sponding to the chip_identifier.

[0123] When an FPGA loads a header file that it created it
decrypts the user_key and user_identifier. At this point the
FPGA has a user identifier and user_key pair loaded in
on-chip registers, these are also known to the TEP and can

Dec. 26, 2002

be used to establish secure communication with the TEP. In
most embodiments the user_key and user_identifier are
loaded into conventional, volatile registers which lose their
value when power is removed. Preferably, the user identifier
register can be read via JTAG or from the user design on the
FPGA but cannot be written from JTAG or the user design
configured onto the chip. Preferably, the user_key register is
inaccessible via JTAG and the user design. This technique
allows the TEP to obtain the main benefits of being able to
specify a key and identifier to be programmed into the FPGA
even when logistical or technical reasons make this incon-
venient.

[0124] 1In a preferred embodiment the user-key is different
for each FPGA. In another embodiment the TEP uses the
same user key for all FPGAs. In another embodiment the
user key is obtained by encrypting the user identifier with a
secret key known to the TEP.

[0125] This technique of layered encryption can be used
with the network based and trusted software based IP
protection schemes outlined above.

[0126] Network-Based Configuration

[0127] In an embodiment where the configuration soft-
ware is connected via a network to the TEP’s website and the
design bitstream information is stored on the TEP’s website
configuration takes places as follows. The configuration
software requests the chip identifier via the JTAG interface
and supplies it to the TEP website. The TEP website then
supplies the matching encrypted header file which is down-
loaded to the FPGA via JTAG. At this point the FPGA has
the user_key and user_identifier available in internal regis-
ters.

[0128] The TEP website can also determine the user_key
and user_identifier from its own databases given the chip
identifier. Alternatively, the FPGA can be asked to report the
user_identifier via JTAG and the user_identifier can be
supplied to the TEP website. The TEP server then performs
the accounting actions as in the previous network based
embodiment. Assuming the FPGA customer is found to have
access to the design and licenses for any cores used the TEP
server then encrypts the design information using the
user_key and downloads it to the configuration software for
transfer to the FPGA via JTAG.

[0129] Trusted Software Based Configuration

[0130] When trusted software is used and there is no
network connection to the TEP server in order to create a
complete bitstream for a particular FPGA the FPGA is asked
to supply its chip identifier via the JTAG interface and is
then loaded with the matching header information also via
the JTAG interface.

[0131] A database of header files and associated chip
identifiers can be supplied on CD-ROM or other media and
as they are encrypted there is no need to keep them secret.
This transaction involves transferring a very small amount
of data. The FPGA is then asked for its used identifier, again
via JTAG. From the user identifier the configuration soft-
ware determines the user key. In the embodiment where the
TEP uses a single user key for all FPGAs the user key is
simply embedded in the configuration software. In the
preferred embodiment where each FPGA chip has a different
key the configuration software may obtain the key from an



US 2002/0199110 A1

encrypted database supplied on CD-ROM. In the embodi-
ment where the user key was calculated by encrypting the
user identifier using a secret TEP key the trusted configu-
ration software has the TEP key embedded in it and repeats
the calculation. As noted above, preferably the trusted
software makes use of a hardware token or smartcard to
store sensitive information such as TEP key’s and perform
cryptographic functions.

[0132] The trusted configuration software now knows the
user_key for the FPGA it also has access to an encrypted
bitstream file containing the user design and copyright
information on any cores used. The key necessary to encrypt
this bitstream file is embedded in the trusted software. The
software decrypts the bitstream file, accesses the copyright
information and checks that licenses are available. If they
are available it decrements the number of available licenses.
It then re-encrypts the bitstream with the user key for the
FPGA and transfers it over JTAG to the FPGA.

[0133] FPGA Actions

[0134] The FPGA then decrypts the bitstream using the
user key to obtain the configuration information for the
design which is loaded into configuration memory. The
FPGA must also store the design into external nonvolatile
memory so that it can be accessed at a later time. In an
embodiment the FPGA encrypts the design using the chip
key and writes it into external nonvolatile memory. In an
embodiment the FPGA decrypts from the JTAG interface as
it is received, re-encrypts the information using the chip key
and writes it out into the external FLASH memory without
storing it in on-chip configuration memory.

[0135] In an embodiment the FPGA makes use of an area
of on-chip memory which is not configuration memory to
support the download process.

[0136] In an embodiment the FPGA writes out the header
file information using the chip key and writes out the
bitstream information encrypted using the user key so the
structure of the information received over JTAG is preserved
in the external nonvolatile memory.

[0137] In an embodiment the bitstream file format
includes a section for copyright information on the cores and
the design itself and this information is written out in plain
text although the cryptographic checksum is calculated on
the whole bitstream file including the copyright information
so that any alterations to the copyright information are
detected.

[0138] Comparing Secured FPGA Bitstreams

[0139] When a problem occurs in equipment containing
SRAM-programmed FPGAs, service engineers need to
determine if the FPGAs have been configured correctly. If
the FPGAs are loaded with unencrypted bitstreams it is easy
for service engineers to read out the nonvolatile memory on
the board and compare it with the correct design information
to determine if it has been corrupted (due to a faulty memory
or other error) or if an incorrect version of the design has
been used. In some applications, for example electronic
gaming machines, tampering with the design in the field is
also a concern. The standard technique for determining if
tampering has occurred is to read out the design bitstream
and compare it bit for bit with the “correct” design bitstream.

Dec. 26, 2002

Distributing bitstreams is also much simplified if every
FPGA loads the same bitstream.

[0140] Although there are effective cryptographic tech-
niques (such as message authentication codes and secure
hash algorithms) for determining if tampering or corruption
has occurred FPGA customers may be resistant to making
use of them and prefer the simplicity of reading back and
comparing memory contents. In some cases regulations
might make it difficult to change to a different technique
even if the customer was convinced of its effectiveness. For
these reasons it would be desirable if the security mecha-
nism allowed tamper or corruption detection by straightfor-
ward comparison of encrypted bitstreams-this implies that
each FPGA should load the same bitstream.

[0141] However, as described above, in order to imple-
ment per-use charging for IP cores and prevent cloning of
equipment containing FPGAs by copying bitstream infor-
mation it is desirable that each FPGA must have a different
secure bitstream.

[0142] Many of the advantages of each chip having the
same bitstream can be made available through an embodi-
ment of the invention in which the same user_key is used for
many chips. The user_key may be associated with a given
FPGA customer or FPGA designer or with a particular
design—or their may even be a single user_key for the TEP.
The value to an attacker of obtaining the secret key is
increased the more designs it is used to protect so in a
preferred embodiment the key is changed on a per-design
basis. In this case the encrypted bitstream file can be created
by trusted CAD tools using the TEP’s secret key. This file
does not need to be decrypted and re-encrypted for each
chip. In a network based configuration scheme there is no
need to transfer megabytes of encrypted bitstream each time
a chip is configured.

[0143] In order to maintain the security benefits of bit-
streams being unique for each chip an extra “bitstream
header” component is added to the header information
described in the previous section and shown in FIG. 10. The
new information is shown in FIG. 11. Normally, when
created by a TEP the original header information does not
contain anything specific to a particular design-and cannot
do so because it is created at the time the FPGA is produced
at which point no information is available about the design
it will eventually be used with. Similarly, the encrypted
bitstream contains no information about the chip for which
it is intended, and cannot do so because the implementation
tools do not have that information available.

[0144] The “bitstream header” information links the origi-
nal header to the design bitstream, the first field is the
user_identifier (in an alternative embodiment the chip_iden-
tifier is used) and the second field is the checksum of the
bitstream file. The additional header information is
encrypted with the user_key which is known to the trusted
configuration software but not to the FPGA customer. The
FPGA customer cannot tamper with or decode the additional
header information. The trusted configuration software or
the TEP server creates the additional header. The FPGA is
designed not to load bitstreams unless the additional header
information is present—thus a complete configuration
loaded into the FPGA chip consists of header, bitstream
header and bitstream.

[0145] To load the configuration information the FPGA
first loads the header and decrypts it using the FPGA_key.



US 2002/0199110 A1

Assuming the checksum information indicates there is no
problem it sets the user_key and user_id registers with the
values from the header. The FPGA then loads the additional
header information and decodes it with the user_key.
Assuming the checksum on the additional header indicates
there is no problem and the user_id obtained from the
additional header matches that stored in chip’s user_id
register the FPGA goes on to decode the bitstream informa-
tion. (In another embodiment the chip id is stored in the
additional header and compared with the chip_id stored on
chip). If the ids do not match the FPGA concludes that the
FPGA customer is trying to reuse a bitstream created for
another FPGA in order to avoid per-use licensing and does
not load the bitstream information.

[0146] The bitstream information is then loaded and
decoded with the user_key. After loading, but before
enabling the user design the FPGA checks that the checksum
on the bitstream file matches that in the additional header. If
they do not match the FPGA concludes that the user is trying
to load a different bitstream file from the one for which the
header was generated in order to avoid per-use licensing
charges and disables the user design. In this case the FPGA
may also clear the configuration memory and take other
appropriate actions.

[0147] If the configuration information was received over
JTAG then, assuming there were no problems detected, it
may also be written out in encrypted form to external
nonvolatile memory as described in the previous section.

[0148] Since the user bitstream is encrypted using the key
supplied by the user every FPGA will have the same
encrypted bitstream and it is possible for field personnel to
determine the bitstream version and detect corruption simply
by comparing bitstreams. Only approximately 32 bytes (256
bits) in the bitstream header in which the user key and
user_id encrypted by the FPGA key is stored will be
different from one FPGA to another. In this technique the
FPGA'’s secret chip_key is used to secure the user crypto-
graphic key rather than the bitstream itself.

[0149] Use of Layered Encryption by Parties Other than
the TEP

[0150] In the previous section we discussed how an
encrypted header file could be created in the FPGA manu-
facturer’s facility for use by the TEP. It will be clear that,
although this technique is advantageously used by the FPGA
manufacturer it can, in fact, be used by anyone who has the
FPGA chip in their possession at a given point in time and
can make electrical connections to its pins. Obtaining elec-
trical connections to the FPGA’s pins is easy as soon as it is
installed on a printed circuit board but requires specialist
handling equipment otherwise.

[0151] Parties who have access to the FPGA at a particular
point in time and may wish to establish secure communi-
cations with it at a later point in time after it has left their
possession include distributors of FPGA chips, FPGA cus-
tomers who wish to secure field-updates of FPGA program-
ming information in their equipment or even end users of
equipment containing FPGAs who wish to lock the FPGAs.
An example of such an end-user might be a corporate IT
department which buys a quantity of equipment containing
FPGAs and wishes to prevent individual employees from
accessing the programming information. It is easy for the

Dec. 26, 2002

manufacturer to access the chip during testing and it is also
easy to access the chip once it has been added to a printed
circuit board. It is less convenient to access the chip between
the point when it leaves the manufacturer and is added to the
PCB since the tester and handling equipment used by the
FPGA manufacturer to access packaged chip is relatively
expensive.

[0152] Tt is also possible for more than organization to act
as a TEP for a given type of FPGA provided they can obtain
access to FPGAs prior to shipment to their customers. If the
FPGA manufacturer refused to cooperate by supplying
access to chips during testing a TEP could even buy FPGA
chips and resell them to its customers.

[0153] A particularly straightforward use of layered
encryption is when the FPGA designer and customer simply
wish to protect their products containing an FPGA from
cloning and reverse engineering in the field. In this case the
bitstream generation software must prompt for a user pass-
word (or a passphrase from which a password can be
calculated) at the time the bitstream is created. As configu-
ration files are created for individual FPGAs the configura-
tion software prompts for the password again in order to
present the password to the FPGA to create the header and
in order to create the bitstream header itself.

[0154] Securing Software Download

[0155] This embodiment considers the case where an
FPGA customer wishes to update bitstreams for FPGAs
located in products sold to end users and deployed in the
field. The products are connected to the internet or some
other communications medium (e.g., fixed or cellular or
wireless telephone network) and can communicate with a
server in the FPGA customer’s facility. For simplicity we
assume that the design does not include any IP cores and the
user posses a nonencrypted bitstream for the complete
design. The general situation is shown in FIG. 13.

[0156] As previously discussed each FPGA contains a
secret key (chip_key) installed during manufacture. The
secret key is unknown to the end user and FPGA customer.
When power is applied to the equipment containing the
FPGA it loads bitstream information from a local nonvola-
tile memory. In this field-upgrade scenario the FPGA cus-
tomer does not have physical access to the FPGA—thus they
cannot simply download a new design via JTAG or the
program the nonvolatile memory chip directly to change the
design without the FPGA’s cooperation.

[0157] During the equipment manufacturing process the
FPGA customer causes the FPGA to create an encrypted
header file containing a user_id and user_key known to the
FPGA customer as discussed previously in conjunction with
FIG. 10. Accessing the FPGA via JTAG is easy since it is
mounted on a printed circuit board when the user_key,
user_id (and other optional fields if required) information is
loaded via JTAG the FPGA programs the external nonvola-
tile memory with the encrypted header information. This
header information is stored in the external nonvolatile
memory along with the remaining bitstream information.

[0158] After loading the design from local memory the
FPGA has an active user design in its configurable logic and,
as a result of processing the header information also has the
user_key and user_id in registers within its cryptographic



US 2002/0199110 A1

and configuration circuitry. These values constitute a shared
secret with the FPGA customer allowing secure communi-
cation.

[0159] Preferably, the download mechanism allows for the
user_key to be changed in the field. This can be done by
extending the bitstream header of FIG. 12 to include a
new_user_key field. When the FPGA loads the bitstream
header and checked that the checksum is correct it knows
that it was created by someone with knowledge of the
user_key (since the bitstream header was correctly
decrypted using the user_key). If the new_user_key field
specifies a value different from the current user_key register
the register is updated prior to decoding the bitstream
information. After decoding the bitstream information the
FPGA also saves the design to its external non volatile
memory to update the header and bitstream header to reflect
the new user_key.

[0160] When downloading bitstreams over a network con-
nection it is preferable not to overwrite the existing con-
figuration data in nonvolatile memory and on-chip memory
as data is received. Only at the end of the entire transmission
can the checksum be checked to see that the file has not been
corrupted or tampered with in transit. Network connections
are sometimes broken before the entire bitstream is trans-
ferred. If the existing configuration data in nonvolatile
memory is overwritten as data is received but the new data
is corrupt or incomplete the equipment no longer has a good
configuration in nonvolatile memory to boot from if power
is lost midway through receiving the data. If the on-chip
configuration is overwritten as data is received the FPGA
may implement incorrect or maliciously created configura-
tions which cause the system to fail in an unrecoverable
fashion.

[0161] For this reason in a preferred embodiment the new
data is saved in a separate area of nonvolatile memory and
when the final checksum has been received and it is known
the data is not corrupt a markerise updated in the indicate
that the new configuration is now current. At that point the
old configuration can be erased. Preferably the marker
should be updated in a single memory write since if power
is lost midway through a more complex procedure the
equipment may not be able to determine which configuration
(old or new) to use. Once this is done the FPGA is “reboo-
ted” to load its new configuration from the external memory.

[0162] There are many FPGA manufacturers and many
possible nonvolatile storage technologies and architectures
so there will necessarily be many variations on the protocol
for downloading and switching between configurations. The
document “Implementing Secure Remote Updates using
Triscend E5 Configurable System-on-Chip Devices,” Appli-
cation Note ANO02, available from Triscend Corporation,
Mountain View Calif. which is incorporated by reference
gives details of managing the process for one particular chip
and FLASH memory.

[0163] Layered Encryption for Software Download

[0164] Insome applications it would be desirable that the
encryption scheme can be applied in layers so that all parties
to the transaction must consent before a reconfiguration
takes place. For example, the TEP might has an interest in
obtaining pay-per-use license fees for any IP blocks in the
design. The FPGA customer might have an interest in

Dec. 26, 2002

making sure that no configuration is loaded into the equip-
ment containing the FPGA that will cause it to operate in a
dangerous or inappropriate manner, this is particularly
important if the equipment is subject to type-approval from
a regulatory authority. For example, a service-provider who
had subsidized the equipment price to the end user might
wish to ensure that the end user could not reconfigure the
device for another service provider. Equally, the end-user
themselves might wish to prevent any of the other parties
reconfiguring and changing the functionality of the device
without their consent.

[0165] If we look at the chain of interested parties from
TEP to end-user it is clear that:

[0166] Parties further down the chain should be able to
prevent parties further up the chain from downloading
bitstreams directly into the equipment and thus changing its
functionality from without their consent.

[0167] Bitstream files and passwords passing down the
chain should be protected from access, modification and
reverse engineering.

[0168] An embodiment of layered encryption which
achieves this is illustrated in FIG. 14. In this case the TEP,
the FPGA customer and the end-user all wish to control
software downloads to the FPGA in the field. Layered
encryption can be viewed as enclosing the bitstream data in
a sequence of envelopes, each of which can only be removed
with the cooperation of the party who added it.

[0169] To achieve this, when a download occurs it passes
through the server computers of all the parties to the
transaction in order with the final download happening from
the end user. At each stage the servers add additional
information. The scheme is designed so that only header
information is added and encrypted at each stage, the
bitstream itself is left unchanged from that supplied by the
TEP. This is important since the bitstream may be several
megabytes long whereas the headers are a few bytes each.
Thus there is little penalty in encrypting and decrypting the
header information many times but it would be expensive if
the FPGA had to decrypt the bitstream many times.

[0170] Header files have the structure of FIG. 10 and are
created by the FPGA when it is in the possession of the
various parties. Since header files are encrypted using the
secret fpga_key they cannot be decrypted by anything other
than the FPGA itself.

[0171] When deployed in the field by the end-user the
nonvolatile configuration memory for the FPGA contains
only the end users header file. Thus, only the end users
server which knows the corresponding user_key can down-
load to the FPGA.

[0172] The end_user server receives FPGA designs from
the FPGA customer to pass to the FPGA in the equipment.
These designs contain the header information generated by
the fpga customer, which if loaded into the nonvolatile
memory would allow the FPGA to determine the FPGA
customers user_key. They also contain the bitstream header
information used to lock the design to a particular FPGA. In
the following description a series of decryptions are
described, at each stage the cryptographic checksum on the
information being decrypted is checked and if an error is
found the entire decryption process is aborted and the FPGA



US 2002/0199110 A1

discontinues the download. The end user server encrypts the
header and bitstream header information with its user key
before downloading to the FPGA.

[0173] The FPGA decrypts the bitstream header informa-
tion using the user_key loaded from the header information
in the nonvolatile memory. The bitstream header format was
described above in conjunction with FIG. 12. If the check-
sum is correct and the user_id matches the FPGA knows that
the download came from the end user and is intended for this
FPGA chip. It then makes a note of the expected checksum
on the bitstream information and continues to decrypt the
next section of the file using the user_key. Preferably a small
block of memory is provided on the FPGA chip as working
storage for this decryption process.

[0174] Assuming that the block of information decrypted
with the user key has a correct checksum the FPGA now has
available the information encrypted with the user key in
unencrypted form and can process it further. The first item
of information is the customer_header, which was created by
the FPGA while it was in the possession of the FPGA
customer and is encrypted with the FPGA_key. The FPGA
now decrypts this block to obtain the user_key for the FPGA
customer. Using this key the FPGA can decrypt the Cus-
tomer bitstream header. The FPGA then checks that the
user_id in the customer bitstream header matches that in the
Customer header (which proves that the customer intended
the bitstream to be supplied to this FPGA) and that the
expected checksum on the bitstream is the same as that
obtained previously from the user bitstream header.

[0175] The FPGA then goes on to decrypt the set of
information supplied by the TEP and encrypted with the
customer key. It decrypts the TEP_header using the FPGA
key to obtain the TEP user key and user_id. Based on these
keys it decrypts the TEP bitstream header and checks that the
user_id is matches that obtained from the TEP header to
determine that the bitstream is intended for this FPGA. It
also checks that the expected bitstream checksum matches
that obtained from the customer bitstream header. If these
tests are passed the FPGA goes on to decrypt the TEP
bitstream to obtain the new configuration information.

[0176] Furthermore, since the key used to encrypt the
bitstream is specified by the TEP it is easy for anyone
authorized by the TEP to decrypt the bitstream to obtain a
standard unencrypted bitstream as produced by the FPGA
design tools. This allows the user to demonstrate to a
regulator or other agency that a particular encrypted bit-
stream corresponds to a given set of high level design files
as easily as they could with a nonencrypted design.

[0177] Nested Cores and VASSPs

[0178] This licensing scheme can be extended so that
cores can contain cores and entire chip designs can be made
available as pay-per-use downloads. The ability to sell cores
which contain cores from other vendors is an important
extension of the business model allowing designers with
system level expertise to create large cores built on top of
smaller functions from other designers. The end customer
then pays all the necessary license fees.

[0179] The ability to sell full chip designs creates a market
where “virtual application specific standard part (VASSPs)”
can be sold to customers who are familiar with board level
design using catalogue components but have no wish to

Dec. 26, 2002

design FPGA configurations themselves. A virtual ASSP is
equivalent to a catalogue part which implements a particular
desired function but is in fact implemented as an FPGA.
VASSP customers have no contact with FPGA implemen-
tation CAD tools but need to run the configuration software
to download design bitstream files to the FPGA during
manufacture. Important benefits are the ability to address
lower volume markets cost effectively and the ability to
provide a customizable solution.

[0180] It is straightforward for the implementation tools to
produce a hierarchical listing of all the modules in a
design—in fact this is commonly done and provided to the
user in log files. Given a file containing a list of modules in
the design all that is necessary is to determine which ones
correspond to licensed IP and to produce a list of the licensed
IP modules used. This list of IP modules can then be stored
with the bitstream file for use in determining any payments
due to core vendors. It is worth noting that some cores may
be instanced more than once in the same design (for example
a design might require two bus interfaces). Preferably, the
TEP should support charging additional fees when a core is
used more than once in a design but it should allow the core
vendor to determine what the customer is charged twice in
this situation. Core vendors may want to give a discount on
the second and subsequent uses of a core in a design.

[0181] Inthe normal case bitstream files will only be made
available to the customer who created them—in general
customers do not want competitors to be able to make use of
their designs. In the case of VASSPs however, entire bit-
streams are purchased by customers who may never create
their own designs at all. This requires some extensions to the
accounting software on the TEP’s computer to reflect the
separation between “designers” who create bitstreams on the
TEP’s server and “customers” who purchase them. All
designers will be almost certainly be customers (since they
will wish to test their designs on FPGAs) but not all FPGA
customers will be designers.

[0182] Some bitstreams may be available by the TEP to
every user, some may be restricted to a particular group of
users specified by the designer and some may be restricted
to their designer.

[0183] In a preferred embodiment when a customer down-
loads a VASSP bitstream which contains other licensable
cores or makes use of a core which contains other cores in
their own design they are only billed for the use of the
VASSP or the top level core. The TEP then bills the provider
of the top level core or VASSP bitstream for any cores it
contains. It is up to the core or VASSP designer to make sure
that the charge they make is enough to cover any fees on the
cores they use. This process may happen recursively—i.e.,
at the next level down cores may also contain cores. The
advantage of this procedure is that the names of the “lower
level” cores used in a higher level core or VASSP bitstream
are confidential information of the core or VASSP designer
which should not be disclosed to the core or VASSP cus-
tomer by the TEP.

[0184] In an another, less preferred, embodiment the cus-
tomer is billed directly by the TEP for all IP cores incorpo-
rated in the bitstream.

[0185] Public Key (Asymmetrical) Cryptography

[0186] One drawback of the first embodiment of the
invention is that secret information must be stored on each



US 2002/0199110 A1

FPGA chip. If an attacker is able to analyze the chip artwork
he may be able to determine the key information for a chip.
Given this information he could decrypt the bitstream file
and produce an unencrypted bitstream. If FPGAs are pro-
vided with a mode supporting “backwards compatibility” to
earlier devices in which they will load unencrypted bit-
streams then as soon as an attacker has an unencrypted
bitstream he can use it in an unlimited number of FPGAs
free of charge. However, if FPGAs only load encrypted
bitstreams then an unencrypted bitstream is of no value—an
attacker would have to disassemble and analyze every chip
into which he wished to load the bitstream in order to
determine its particular key. Suitable analysis techniques are
time consuming and expensive and destroy the chip so this
is not an option. Security is provided by the difficulty of
analyzing or copying the FPGA chips.

[0187] One weakness of this scheme is that, in theory, an
attacker who obtained a nonencrypted bitstream could
reverse-engineer the bitstream to determine original design
information. If this reverse engineering is done successfully
the attacker could then start with these design files, remove
any copyright information, and use the normal CAD flow to
create a design which would appear to be his property and
have no pay-per-use fees attached.

[0188] It would be desirable to provide a security scheme
which was not dependent on secret information being stored
in the FPGA so that attacks which attempted to determine
secret key information by analyzing the FPGA die were not
of concern. This can be done using public key cryptography.
In this scheme each FPGA contains a public key for the TEP
(which may, for example, be embedded in the FPGA artwork
or using laser programmed fuses) and a unique serial num-
ber (which may, for example, be embedded using laser
programmed fuses). The security scheme does not rely on
these numbers being secret, only on the fact that it would
cost much more to alter the code on an FPGA chip than to
pay the license fee for any cores.

[0189] In this scheme the TEP keeps the secret key cor-
responding to the public key embedded in the FPGAs on a
secure server connected to the internet. In order to create a
bitstream for a particular FPGA the customer configuration
computer reads out the FPGA’s serial number via JTAG and
sends it to the TEP along with an identifier for the bitstream
file to be loaded. The computer at the TEP then adds the chip
identifier to the bitstream and calculates a cryptographic
hash of the bitstream plus the identifier. It then encrypts this
hash value using its secret key to create a “signed” hash
value for the bitstream and appends the signed hash to the
bitstream before sending it back to the user computer.

[0190] The FPGA then loads the bitstream with the signed
hash and checks that the chip_identifier specified in the
bitstream is equal to the one programmed into itself during
manufacture. If so then it calculates the cryptographic hash
of the bitstream, including the chip identifier and decrypts
the signed hash transmitted with the bitstream using the
on-chip public key for the FPGA manufacturer. If the
decrypted hash is equal to the calculated hash then the
bitstream was generated by the FPGA manufacturer for this
particular FPGA and it can be loaded.

[0191] From time to time the TEP will wish to change its
public/private key. This is standard practice to limit the
length of time a hacker who has managed to access the

Dec. 26, 2002

private key can make use of it. Changing the keys is
achieved by sending a new key to the FPGA manufacturer
for implanting into chips at the time of manufacturing. The
TEP, computer must also track which key should be used
with a given chip. This is easily achieved since the chips
report their identifier to the TEP. If the identifiers are
sequential it is simply a matter of noting which ranges of
identifiers have a given public key implanted (e.g., chips 0
to 10,000 have key 1, chips 10,001 to 20,000 have key 2 and
so on). If the identifiers are not sequential then a database of
identifier against key can be kept.

[0192] Design Watermarking

[0193] Inthis embodiment it is assumed that in some cases
it is necessary for customers to be given access to the design
source files for intellectual property cores. This creates the
possibility that the customer will remove any copyright tag
information from the design source and run it through the
implementation tools as if it were their own design in order
to avoid paying per-use license fees.

[0194] Watermarking techniques have been suggested in
the technical literature by which a design can have addi-
tional information implanted into it which is very hard to
remove (see, for example “Fingerprinting Intellectual Prop-
erty Using Constraint Addition,” paper 36.2 in Proceedings
of the 37th Design Automation Conference, Los Angeles
Calif., Jun. 5-9, 2000, published by the Association for
Computing Machinery which is incorporated by reference
and the bibliographic references in that paper).

[0195] We assume that the TEP needs to approve bit-
streams before they are downloaded into FPGA chips. That
is, in this embodiment, the chips do not have a “backwards
compatibility” mode in which nonencrypted designs can be
loaded. Further we assume the TEP requires that the entire
bitstream (rather than just a hash or checksum derived from
the bitstream) is sent for approval. In this case the TEP can
archive all bitstreams before encryption. This substantially
increases the risk for any pirates who choose to use FPGA
cores without paying license fees since the FPGA manufac-
turer has a complete database of bitstreams, the customer
who created them and the number of times they have been
used.

[0196] In an embodiment where designs must be pro-
cessed by the TEP server it is easy for the TEP to check for
watermarks indicating licensed IP cores before processing it.
If the TEP has to run place and route tools it can check for
watermarks in the design netlist rather than the bitstream.

[0197] 1t is also possible to put the watermark detection
code into trusted software for design implementation (to
check for watermarks in the netlist) or device configuration
(to check for watermarks in the bitstream, prior to loading
into the chip).

[0198] It is possible for the chip itself to check for water-
marks and refuse to load the design unless the licensing
information in the bitstream indicates that fees have been
paid. However, due to the complexity of watermarking
algorithms this is currently not a preferred technique.
Advances in process technology and the general inclusion of
relatively powerful microcontroller cores on FPGAs may
make this technique more attractive in the future.



US 2002/0199110 A1

[0199] Copyright Tag Components

[0200] In this scheme the core vendor includes in the
schematics or HDL source for their design a special com-
ponent whose function is to provide core copyright infor-
mation to the FPGA vendor’s CAD tools. For example the
component could be instanced as:

[0201] copyright
7“core_parameters”);

2%¢

(“vendor_name,”“core_name,

[0202] By creating an explicit component to transfer copy-
right information to the implementation software one avoids
the need to deduce information which may be used for
billing from design files. If information is deduced rather
than stated explicitly there is always the chance for error—
for example, a user might inadvertently choose the same
name for a component in his design as a core vendor uses for
a licensed core and software might erroneously deduce that
the core was used in the user design. FPGA vendors have
used “dummy” components in designs to transfer non-netlist
configuration information to the bitstream generation tools
in the past—for example FPGAs contain components such
as power on reset circuits and have various voltage options
on I/O signals.

[0203] Parts with On-chip Nonvolatile Memory

[0204] Cryptographic techniques for protecting bitstream
information have, in the past, been directed at SRAM
programmed FPGAs which require an external nonvolatile
memory to store configuration information, which can then
be monitored as it passes onto the chip making it relatively
straightforward to copy. Antifuse parts have a reputation for
offering a high degree of protection against design piracy
since it is very difficult to determine if a particular antifuse
is programmed and therefore to obtain design information
by examining a configured part. Further, antifuses can only
be programmed once so there is much less scope for
software download and reconfiguration in the field (although
theoretically it is possible-for example by leaving an area of
the chip deliberately empty and unprogrammed in the initial
configuration).

[0205] The fact that a part is antifuse programmed does
not provide any additional protection to IP core vendors
since the FPGA customer will have a complete bitstream for
use in the antifuse chip programmer and can program as
many FPGA chips as they like with the bitstream. Accord-
ingly it is worth considering cryptographic techniques by
which antifuse FPGAs can be made to load only bitstreams
generated specifically for a given part. These concerns also
apply to other nonvolatile programming technologies such
as FLASH and EPROM and upcoming technologies like
magnetic and ferric ARM. Although the embodiment dis-
cussed below assumes antifuse technology the teachings
could be applied by one skilled in the art to FPGAs based on
other nonvolatile memory technologies.

[0206] In an antifuse programmed FPGA it makes sense to
use antifuses to store secret key and chip identifier infor-
mation. These antifuses can easily be programmed before
the chip leaves the FPGA manufacturer. The technique of the
first embodiment can be used in which the FPGA manufac-
turer maintains a database of secret key and chip identifier.

[0207] A difference between antifuse FPGAs and SRAM
programmed FPGAs is that no external nonvolatile memory

Dec. 26, 2002

is required. As soon as the bitstream data is decrypted and
loaded into the chip itself the antifuses are programmed and
cannot be reprogrammed. Most cryptographic techniques
only provide a checksum to verify the configuration infor-
mation after the entire bitstream has been loaded. In the case
of an antifuse FPGA this is too late—if there has been a
problem the chip is already programmed with bad data and
is effectively scrap. Therefore, it may be worth extending the
protocol so that the chip can check that the bitstream has
been encrypted with the correct key using some additional
header information before it starts to decode the actual
bitstream and program antifuses.

[0208] 1In the future it may be possible to cost-effectively
integrate blocks of FLASH memory onto FPGA chips
without compromising speed. Flash memory based FPGAs
are already available from Actel corporation. Research is
also underway into nonvolatile RAM technologies based on
magnetic effects. On chip nonvolatile memory may be a
separate block whose data is transferred into SRAM con-
figuration memory on power up or the nonvolatile memory
cells may directly control the programmable switches. Use
of nonvolatile memory on chip removes some security
problems—in particular the need to communicate configu-
ration information between an external nonvolatile memory
and the FPGA on power up. However, it does not remove the
need for cryptography to support per-use licensing of IP and
software download. It may be possible to physically analyze
chips to determine the values stored in nonvolatile memory
cells so there is also some reason for encrypting data stored
in on chip nonvolatile memories when these do not directly
control configuration switches. Many of the cryptographic
techniques disclosed in this application can be equally well
applied to chips with nonvolatile configuration memory.

[0209] SIM Card Replacement

[0210] Today, in most mobile telephones a separate sub-
scriber identification module (SIM) card is provided to
identify the subscriber to the network. The SIM card con-
tains a secure microcontroller with a small amount of
nonvolatile memory which can be used to store service
information and address book information. The cellphone
itself has a much more powerful processor and a much larger
nonvolatile FLASH memory which holds program code.
However, network operators are unwilling to store sensitive
information in this large memory because of security con-
cerns. A hacker could simply readout the large memory to
obtain sensitive information—for example in order to access
telephone services without paying.

[0211] The secure microcontroller in the SIM card
addresses these security concerns but at the expense of
adding considerable expense to the handset and an addi-
tional component which must be managed in the sales
channel. Ideally, instead of having a physical SIM card,
service information to enable the telephone could simply be
downloaded over the radio from the network.

[0212] This disclosure has covered cryptographic tech-
niques by which a large external volatile memory, such as
the program memory in cellular telephones, can be secured.
Secure microcontroller or DSP code can be loaded from the
external nonvolatile memory, decrypted and stored in an
on-chip block of volatile random access memory (RAM) for
execution in the same way as FPGA configuration informa-
tion is loaded, decrypted and stored in on-chip configuration



US 2002/0199110 A1

memory. Further, layered encryption allows all parties
involved: cellphone chipset manufacturer, cellphone manu-
facturer, network operator, service provider and user to take
control of the software download process. Thus it is possible
to securely download new software and service information
into the cellphone. Software download can be used not only
for the relatively small amount of information stored in the
SIM card (such as user phone number lists and service
information) but also the remainder of the cellphone’s
software. In a “software radio” strategy basic radio functions
such as modulation, demodulation and channel selection are
implemented in software. FPGA cores may be used to
implement signal processing functions which require both
high performance and configurability.

[0213] Partial Reconfiguration

[0214] The preceding discussion has assumed that the
FPGA chips are configured entirely by a single bitstream
file. This is generally the case in current practice but
considerable research interest has focussed on partial and
dynamic reconfiguration. In partial reconfiguration a bit-
stream file may configure only a section of the chip. In some
devices such as the Xilinx XC6200 family this can be done
while user circuitry configured onto other areas of the chip
remains operational. In dynamic reconfiguration areas of the
chip are reconfigured in the course of a computation so that
a larger design than will fit on the chip at one time can be
implemented.

[0215] The security technique of the present invention can
be extended to include these scenarios by independently
protecting the “bitstream segments” in the same way as the
entire bitstream was previously protected.

[0216] In U.S. Pat. No. 5,946,478 assigned to Xilinx Inc.
which is incorporated by reference a method for creating
“secure macro elements” for FPGA designs is proposed.
These macro elements are compiled to partial bitstream files
which are then supplied to the designer and linked together
into the design file. Supplying partial bitstream files rather
than netlist files is an alternative approach to encrypting
design netlist files to protect intellectual property as
described in earlier embodiments. An extension of the
technique based on a partial reconfiguration capability
would be for the final design bitstream to be composed of
several partial bitstream files. The portion of the design
created by the FPGA designer could be in a separate partial
bitstream file from design portions created by various core
vendors. Each bitstream portion could be protected sepa-
rately using the cryptographic techniques of this invention
so that the user_key for each bitstream portion was different
and only known to the creator of that portion. This technique
could remove the need for a TEP since there is now no need
for a single party to be trusted with the complete set of
design information.

[0217] Use with Microcontroller

[0218] Many of the more recent FPGA devices include an
on-chip microcontroller. Bitstream formats have been devel-
oped for these devices which include both FPGA configu-
ration information and microcontroller code. Most of these
devices include on-chip memory blocks into which micro-
controller code is loaded and from which it is executed.
Bitstream information containing microcontroller code to be
loaded into on-chip memory can be treated exactly the same

Dec. 26, 2002

way as FPGA configuration information for the purposes of
this invention. It is more difficult to cryptographically pro-
tect microcontroller code which is run from external
memory so it is generally recommended that only parts of
the code which do not require protection are run from
external memory.

[0219] Additional Precautions in Secure FPGA

[0220] Some additional security precautions not found on
conventional FPGAs are required on the secure FPGA chip:

[0221] Secure bitstreams must be able to shut off access
mechanisms commonly provided for design debugging
which allow users direct access to read back configuration
information or access register information within user
designs.

[0222] 1t must be impossible for user microcontroller code
or user FPGA bitstreams to access the on-chip secret key. If
such access was possible a design could be created which
transferred key information off chip.

[0223] Since it is problematic for user code or user designs
to access the secret key it is considered preferable to provide
a separate hard-wired encryption unit for the lowest level
encryption rather than use microcontroller code or designs
loaded onto the FPGA to perform this function.

[0224] Although it is preferred that the lowest level of
cryptographic protection which secures the external non-
volatile memory is provided by fixed hardware on the device
additional layers of protection might be best implemented in
microcontroller code or user FPGA configurations. Once the
initial layer of hardware protection is in place it can secure
the microcontroller code or user FPGA configurations used
in additional layers, e.g., to secure a network connection for
download. Allowing the use of user logic or microcontroller
code for higher level encryption functions means that the
FPGA is not limited to any particular encryption algorithm
selected by its manufacturer. User_key and user_identifier
information can be built into the bitstream for the encryption
functions so they are not limited to any particular size of
register provided on the chip. However, using user resources
for design protection s likely to be inconvenient and expen-
sive in resources compared with using the built in hardware.

[0225] Implementing Chip Keys Using Laser Pro-
grammed Fuses

[0226] An attractive technique for implementing per-chip
customization is to provide metal segments which can be cut
by a laser beam during manufacture. This technique has
been used in fault-tolerance schemes for dynamic random
access memories for some time and is low cost and suitable
for high volume production.

[0227] A problem with laser fuses in the context of a
security scheme is that since they must be relatively large
and on top level metal to be easily programmed by a laser
it is relatively straightforward for a well equipped attacker to
remove the chip from its packaging and use a microscope to
determine the settings of any laser programmed fuses.

[0228] If the laser fuses are used to implement security
features such as public keys or chip identification numbers
which must be chip specific and hard to alter without
damaging the chip but are not secret then this is not a



US 2002/0199110 A1

problem. However it is a major concern if the laser pro-
grammed fuses are to implement secret keys.

[0229] Several techniques are available to combat the
visibility of the fuses. The basic idea is to combine the
customizability of the fuses with the difficulty of analysis but
lack of customizability of mask programmed connections.
The applicant’s previous patent application GB 0002829.0
described various techniques for implementing a key using
mask programming and is incorporated by reference.

[0230] In an embodiment more laser fuses than are actu-
ally required for the number of bits in the key can be
provided. These additional bits can also be laser pro-
grammed, since if some bits are never cut by the laser an
attacker could determine which bits were dummies by
analyzing a large number of chips.

[0231] In an embodiment the ordering of the fuses com-
pared with the bits of the key is scrambled using wiring on
other mask layers. In an embodiment active circuitry is used
to scramble the bits of the key.

[0232] In a preferred embodiment the key is calculated
from a number of laser fuses larger than the number of bits
in the key. This can be done, for example, using a crypto-
graphic hash algorithm or message authentication code and
a secret key embedded in the chip masks. In this embodi-
ment there is no simple relationship between the values in
the laser programmed fuses and the bits of the key.

[0233] In an embodiment some bits of the key are deter-
mined by laser fuses whereas others are determined solely
from the mask work.

[0234] In an embodiment the fuses encode the chip iden-
tifier and the chip secret key is determined by an encryption
or secure hash algorithm operating on the serial number
based on a secret key embedded in the device maskwork.

SUMMARY

[0235] This application describes many embodiments and
modes of use of a novel configuration method for FPGAs in
which a cryptography is used in conjunction with key
information stored on each FPGA chip to ensure that bit-
streams have to be created individually for each chip. The
requirement to create individual bitstreams for each chip and
to obtain cooperation from a third party in doing so allows
new business models in which users must pay for each time
an intellectual property core is configured into an FPGA chip
and for each time an FPGA chip is configured. These
business models allow FPGAs to compete more effectively
with ASICs and create a viable business in providing intel-
lectual property for FPGAs.

[0236] While the technique has been described with ref-
erence to FPGAs once skilled in the art will recognize that
it is equally applicable to other programmable classes of
integrated circuit. Such chips would include field program-
mable interconnect components (FPICs), microcontrollers
with on-chip SRAM program and data memory and hybrid
chips containing, for example, a microcontroller and an area
of programmable logic. They also include more recent
devices which are configured like FPGAs but operate on
words of data more than one-bit wide to implement com-
putational functions and devices with more than one plane of
configuration memory.

Dec. 26, 2002

[0237] Many variations of the intellectual property pro-
tection technique have been described. The marketplace for
FPGAs and programmable chips is complex and potential
users of the technology have a variety of existing products
and business models. Commercial implementations of the
security technology may well incorporate several of the
alternative embodiments described in order to appeal to a
wider range of potential customers and provide backward
compatibility to existing tools and products.

[0238] While the description above contains many specific
details, these should not be construed as limitations on the
invention, but rather as an exemplification of one preferred
embodiment thereof. Many other variations are possible.

[0239] Accordingly, the scope of the invention should be
determined not by the embodiments illustrated but by the
appended claims and their legal equivalents.

What is claimed is:
1. A method comprising:

manufacturing field programmable gate array integrated
circuits, each integrated circuit having an identification
code and a secret cryptographic key; and

creating a database of identification codes and secret
cryptographic keys, wherein a field programmable gate
array integrated circuit with a particular identification
code is configurable using a bitstream encrypted using
a secret cryptographic key associated with the particu-
lar identification code.

2. The method of claim 1 wherein each field program-
mable gate array integrated circuit has a unique identifica-
tion code.

3. The method of claim 1 wherein the database is stored
on a computer-readable medium.

4. The method of claim 1 wherein the database is stored
on at least one of a magnetic disk or an optical disk.

5. The method of claim 1 wherein the identification code
and secret cryptographic key are imprinted on each field
programmable gate array using a laser.

6. The method of claim 1 wherein the identification code
has at least 64 bits.

7. The method of claim 1 wherein the secret cryptographic
key has at least 128 bits.

8. A method comprising:

receiving an identification code of a programmable inte-
grated circuit;

obtaining an encryption key associated with the identifi-
cation code;

encrypting a bitstream file using the encryption key into
an encrypted bitstream; and

providing the encrypted bitstream, whereby the encrypted
bitstream may be used to configure the programmable
integrated circuit with a design as specified in the
bitstream file.

9. The method of claim 8 further comprising:

deducting a transaction fee from an account of a customer
purchasing the encrypted bitstream.
10. The method of claim 8 further comprising:

crediting an account of a provider of the bitstream file.



US 2002/0199110 A1

11. The method of claim 8 further comprising:

determining the identification code of the programmable
integrated circuit by accessing a JTAG interface of the
programmable integrated circuit.

12. The method of claim 8 wherein the programmable
integrated circuit is a field programmable gate array.

13. The method of claim 8 wherein obtaining an encryp-
tion key comprises looking up in a database an encryption
key associated with the identification code.

14. The method of claim 8 wherein obtaining an encryp-
tion key comprises generating the encryption key using the
identification code.

15. The method of claim 8 wherein the bitstream file
comprises IP cores of two or more IP core vendors and the
method further comprises:

crediting accounts of the two or more IP core vendors.

16. The method of claim 8 wherein obtaining an encryp-
tion key comprises loading an encrypted header file into the
programmable integrated circuit.

17. A method comprising:

receiving a request over a network from a customer to
purchase an IP core for a field programmable gate array
integrated circuit;

charging the customer a price for the IP core;

obtaining an identification code for the field program-
mable gate array integrated circuit; and

sending over the network an encrypted bitstream com-
prising the IP core, wherein the encrypted bitstream
may be used to configure the field programmable gate
array integrated circuit with the identification code.

18. The method of claim 17 wherein the network com-
prises the Internet, wireless data transfer, optical data trans-
fer, telephone line data transfer, or modem data transfer.

19. The method of claim 17 wherein the identification
code is obtained through a JTAG interface of the field
programmable gate array integrated circuit.

20. The method of claim 17 wherein the identification
code is unique to the field programmable gate array inte-
grated circuit.

21. A method comprising:

receiving a request over a network from a customer to
purchase a design file for configuring a field program-
mable gate array integrated circuit, wherein the design
file comprises one or more IP cores;

charging the customer a price for the design file;

Dec. 26, 2002

obtaining an identification code for the field program-
mable gate array integrated circuit; and

sending over the network an encrypted bitstream for the
design file, wherein the encrypted bitstream may be
used to configure the field programmable gate array
integrated circuit with the identification code.

22. The method of claim 21 further comprising:

crediting accounts of one or more IP core vendors of the
one or more IP cores included in the design file.
23. A method comprising:

receiving a first encrypted bitstream file, which may not
be directly used to configure a field programmable gate
array; and

decrypting and reencrypting the first encrypted bitstream
into a second encrypted bitstream file, which may be
used to directly configure the field programmable gate
array.
24. The method of claim 23 wherein the first and second
encrypted bitstream files comprise the same IP core designs.
25. A method comprising:

loading and decrypting a first encrypted header in a field
programmable gate array using a first key;

determining a second key stored in the first encrypted
header;

loading and decrypting a second encrypted header into the
field programmable gate array using the second key;

determining a first user identification code stored in the
second encrypted header;

comparing the first user identification code stored in the
second encrypted header against a second user identi-
fication code stored on the field programmable gate
array;

if the first and second user identification codes match,
loading and decrypting a third encrypted header in the
field programmable gate array using the second key;
and

configuring the field programmable gate array with bit-
stream information stored in the third encrypted header
if a first checksum stored in the third encrypted header
matches a second checksum stored in the second
encrypted header.

#* #* * #* #*



