
Validation of an Advanced Encryption Standard (AES) IP Core

Valeri Tomashau, Tom Kean

Algotronix Ltd., PO Box 23116, Edinburgh EH8 8YB, United Kingdom. Contact e-mail: tom@algotronix.com

Abstract This paper describes the package of test bench
code required to verify the Algotronix’ AES IP Core. Several
authors (see the references in [3]) have published papers
detailing the implementation of the Advanced Encryption
Standard (AES) on FPGA chips; however, the design goals of
this AES core are somewhat different from previous work.
Rather than emphasizing performance our design emphasizes
portability and customer confidence in the security of the
VHDL code.

1. Introduction The AES algorithm was accepted by the
National Institute of Standards and Technology (NIST) of the
United States as a Standard in November, 2001 [1]. We present
a VHDL model of the AES algorithm and the complete test
bench for its verification according to the NIST requirements in
“The Advanced Encryption Standard Algorithm Validation
Suite (AESAVS)” [2].

In most applications AES hardware performance can easily
exceed the ability of the system to supply data; therefore
Algotronix believes the emphasis on raw performance in the
literature is misplaced. Moreover, the performances quoted are
for pipelined designs. Pipelining cannot be used in common
applications where AES is run in Cipher Block Chaining
(CBC) mode with a single stream of data because of a feedback
loop which prevents encryption of the next word of data
beginning until the ciphertext of the previous word is available.
Algotronix has created an IP core design that is area efficient
and is portable between FPGA families and between FPGAs
and ASICs so that customers can make the most cost effective
technology selection.

Cryptographic cores are different from most Intellectual
Property cores because, as well as the possibility of design
errors customers must consider the possibility of intentional
and malicious features being added to the design. In sensitive
applications of cryptographic IP cores customers will require to
inspect the core source code - this may be mandated by
certification schemes such as Common Criteria. Only a source
code review can demonstrate that there is no ‘backdoor’
mechanism incorporated in the core which would compromise
security. A simplistic example of a backdoor would be a
design which, when provided with a certain pattern of input
data, caused the secret key to be written to the ciphertext
output. If the pattern which triggers the key to be written is
128 bits long it would be almost impossible to detect the
backdoor using test vectors. More subtle and harder to detect
variants of this attack are possible. We believe that FPGA IP
Core designs which are heavily optimized for performance at
the expense of code simplicity and supplied as ‘black box’
generated netlists are less appropriate for high security

applications than simpler cores supplied as HDL source
code.

2. Test Bench The test bench consists of three main
components: Known Answer Test, Monte Carlo Test, and
Multi-block Message Test [2]. Each of them involves four
particular test benches to verify various ciphering processes
(encryption in the Electronic Code Book (ECB) mode,
encryption in the Cipher Block Chaining (CBC) mode,
decryption in the ECB mode, and decryption in the CBC mode)
as shown in the table below.

Test Suite
AES Cipher
Mode

Known
Answer
Test (KAT)

Monte
Carlo Test
(MCT)

Multi-block
Message
Test (MMT)

Encrypt Encrypt Encrypt ECB
Decrypt Decrypt Decrypt
Encrypt Encrypt Encrypt CBC
Decrypt Decrypt Decrypt

2.1 Known Answer Test The NIST Known Answer Test
(KAT) provides comprehensive coverage of all components of
the implementation by applying a set of plaintext (or ciphertext
in the case of decryption tests), key, and initial value to the
implementation and checking that the correct ciphertext
(plaintext) is generated. The various KAT tests are intended to
stress different elements of the implementation. The valid
expected responses on the KAT tests along with input data are
tabulated in the appendixes B, C, D, E to the document [2].

2.2 Monte Carlo Test The function of the Monte Carlo
Tests (MCT) is somewhat different. The KAT tests provide
confidence that there are no implementation errors in the
design. However, it would be possible to create an AES design
which passes all the KAT tests (since the responses are known
in advance) but behaves improperly on some other values. For
this reason a particular set of test vectors and known-answers
are not specified in the MCT test. Instead a generic method of
iteratively running the AES algorithm is specified. In formal
compliance testing the actual starting value for Monte Carlo
testing is chosen by the NIST accredited laboratory to which
the design is submitted.

Each Monte Carlo Test is organized as a sequence of 100
multi-block messages of 1000 blocks each. Hence any MCT
test involves 100,000 encryption (or decryption) operations.

Monte Carlo testing using the NIST specified conditions
requires a long simulation time because it involves 100,000
runs through the implementation under test. The test bench

allows the user to specify the conditions (m - the number of
messages and n - the number of blocks in the multi-block
message) of the Monte Carlo Test. This allows fast
preliminary testing with smaller test sets: to carry out the MCT
according with the NIST requirements the user specifies
n=100, m=1000.

The AESAVS document [2] supplies some known-answer data
for two initial iterations of the MCT. In addition we provide a
wrapper C program around a software implementation of the
AES which allows the user to generate correct values for their
own Monte Carlo testing before submitting an application for
certification to a NIST accredited laboratory.

The software implementation of AES used for Monte Carlo
testing is the well known open source implementation by Brian
Gladman [4] not code written by Algotronix. Customers can
download the ‘known good’ AES software used to test the
VHDL directly from the third party website. If the C program
was written by the same person as the VHDL implementation
there could be a question as to whether they had (possibly
deliberately) inserted the same faulty logic in both programs so
that Monte Carlo testing would not detect some error or
backdoor function hidden in the IP core.

2.3 Multi-block Message Test The Multi-block Message
Test (MMT) is designed to verify the ability of the AES
implementation to process multi-block messages. This test
involves ten multi-block messages of different length with
number of blocks from 1 to 10. The MMT test is particularly
important for verification of the AES implementation in the
CBC mode (Cipher Block Chaining mode).

Some sample data sets along with the valid responses of the
AES algorithm are provided. In addition there is a wrapper C
program around the software implementation of the AES
algorithm which allows the user to generate correct response
values for any MMT input data.

3. Implementation Details The AES core processes
data blocks of 128 bits using a cipher key of length 128 bits in
the CBC and ECB mode only. Encryption and decryption
processes are implemented as separate designs. The AES key
expansion process is implemented in the hardware design.

Rather than using FPGA memory blocks for the algorithm of
the SubBytes Transformation (and the Inverse SubBytes
Transformation as well) was expressed with the aid of the eight
8-variable Boolean functions. To implement them on the 4-
input LUT based FPGA an S-box substitution table was
automatically converted to the set of 4-input Boolean functions
by the use of the Shannon expansion under a subset of the four
variables. Each target 8-input Boolean function is represented
as the two-level composition of 4-variable functions. Some
sharing of logic is possible between target functions.

The VHDL code has initially been mapped to the Xilinx Virtex
FPGA, but since device specific features such as RAM blocks
have been avoided it should be highly portable between FPGA
families and even to ASIC. Performance details for the basic
un-pipelined design are given below. Since the design is
supplied in VHDL source code users can add pipelining as
required to trade area for performance. The core is smaller
than highly pipelined designs described in the recent literature
(see references in [3]) and has a higher clock frequency. ECB
mode throughput is lower because there is no pipelining. In
CBC mode with a single data stream (which we believe will be
the most common mode of use) pipelining cannot be used.
This is because the feedback structure of CBC means the next
encryption cannot start before the previous one has finished.

Xilinx XCV300-8 Encryption Decryption
Slices & (%) 1,495 (48%) 2,587 (84%)
4-input LUTs 2,455 (39%) 4,795 (77%)
Gate count 20,541 48,049
Clock (MHz) 51.1 47.5
Speed grade -8 -8

Conclusion The combination of a simple, portable and
efficient AES IP core supplied as VHDL source code with a
comprehensive test bench provides an excellent platform for
high security applications.

The test bench described here can also be used (with minor
modifications to the wrapper code) to provide additional
confidence in AES cores bought from other vendors or
developed in house. Using a test bench from an unrelated party
provides additional confidence that the test bench has not been
manipulated so that it will not detect backdoor code in a
particular AES implementation.

References

[1] National Inst. of Standards and Technology "Federal
Information Processing Standard Publication 197, The
Advanced Encryption Standard (AES)", November 26, 2001

[2] National Inst. of Standards and Technology "The
Advanced Encryption Standard Algorithm Validation Suite
(AESAVS)", November 15, 2002,

[3] Saqib et al., “Two Approaches for a Single Chip FPGA
Implementation of an Encryptor/Decrytor AES Core.” Proc.
FPL 2003, Springer LNCS2778.

[4] Gladman, Brian, “Implementations of AES (Rijndael) in
C/C++ and Assembler.” Web Page:
http://fp.gladman.plus.com/cryptography_technology/rijndael/i
ndex.htm

