
A Fast Constant Coefficient Multiplier for the XC6200

Tom Kean, Bernie New and Bob Slous
Xilinx Inc.

Abstract. We discuss the design of a high performance constant coefficient multiplier
on the Xilinx XC6200 FPGA. The dynamic reconfiguration capabilities of the device
are used to allow the constant coefficient to be rapidly changed. The design also
provides better performance and density than similar multipliers on state of the art
conventional FPGA’s which require complete reconfiguration to change the
coefficient.

Introduction
The Xilinx XC6200 [1] is the first commercial FPGA specifically designed to work in
close cooperation with a microprocessor. To the microprocessor the XC6200 appears
as a block of RAM, configuration data and registers within the user design appear
within this memory space. The data bus width is programmably selectable to 8,16 or 32
bits. Additional features support writing many words of configuration memory with
the same data simultaneously (to reduce configuration time) and grouping non-
adjacent registers within the user design into a single word for transfer to and from the
processor. XC6200 application development and debug is supported by the
XACTStep Series 6000 CAD software package and by a PCI bus resident development
system [2]. The XC6200 architecure is derived from the Algotronix CAL technology
which Xilinx aquired in 1992 [3] [4].

Constant coefficient multiplication is a common function in many Digital Signal
Processing (DSP) applications such as Finite Impulse Response (FIR) filtering. In this
case the constant coefficients represent filter parameters and are changed much less
frequently than the input data values. The multiplier described here multiplies an 8-bit
input number by a constant 8-bit coefficient to get a 16-bit result, the numbers are
unsigned.

An efficient technique to implement fixed coefficient multipliers of FPGA’s using Look
Up Table (LUT) based FPGA’s was developed by Xilinx [5]. This relies on lookup
tables, rather than a network of adders, to perform most of the multiplication. For
example, there are 16 possible results when a four bit number is multiplied by an 8 bit
fixed number (because there are 16 different four bit numbers). Thus a four bit variable
times eight bit constant mu ltiplier can be implemented by a 16 entry lookup table. Each
entry must be 12 bits, the width of the largest possible output. An 8-bit by 8-bit
constant multiplier can be built using two of these 4-bit by 8-bit constant multipliers in
the configuration shown in figure 1. Figure 2 explains the simple mathematics behind
this arrangement.

Figure 1: LUT Based Multiplier

LUT-
B

Adder

LUT-
A

8 bit Data
4 4

12
8

412

Physical Implementation
Figure 3 shows the hardware components required to implement the 8x8-bit multiplier.
Pipeline registers have been added to increase the throughput. Note that not only the
adder but also the LUT’s are pipelined.

Unlike XC4000 FPGA’s which use LUT’s to implement logic functions XC6200’s have
a simpler function unit built around a 2:1 multiplexer. This function unit can implement
a register and either a 2:1 multiplexer or any one of the 16 logical functions of two input
variables. The ability to implement a register and a combinational logic function makes
pipelining inexpensive in this technology. Figure 4 shows a naive approach to
implementing a 4-input lookup table using 2:1 multiplexers and registers. Figure 5
shows how this can be collapsed by encoding the leaf nodes of the tree into gate
functions. It takes four bits of configuration memory to encode the truth table of a 2-
input logic gate so what we are doing is moving the 16 bits of memory provided by
user registers in figure 4 into bits of configuration memory.

It is possible to obtain a very regular layout for the individual 4-input LUT’s as a
single row of 8 cells. These slices can be stacked vertically to form the 12-bit output,
4-bit input LUT’s required. The fact that the layout is so regular makes it easy to
determine which parts of the chip need to be reconfigured at run time. The layout of
the multiplier LUT is shown in figure 6. Note that the pipelining scheme used requires
that some slices, corresponding to more significant bits, have additional registers.

Figure 2: Maths of LUT Based
Multiplier

Constant

LUT-B Input LUT-A Input

LUT-A Output

LUT-B Output

Adder Output

LUT-B LUT-A

4bit half 4 bit full 4 bit full Reg

M[7:0]

M[7:4] M[3:0]

B[11:8]
B[7:4]

A[11:8]
B[3:0]

A[7:4] A[3:0]

P[15:12] P[11:8] P[7:4] P[3:0]

Figure 3. Multiplier Architecture

Figure 4: Building LUT's from Muxes

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

A0 A1 A2 A3

F(A0,A1,A2,A3)

Figure 5: Optimised LUT Construction

A0
A1

A2 A3

F(A0,A1,A2,A3)

?

?

?

?

The LUT function is encoded
into the functions implemented

by these gates

Func1 Func2 Func3 Func4

Figure 6: LUT layout on XC6200

Changing Coefficients.
The XC6216 memory map is designed so that the control memory for functionally
related resources on the chip occur in logically adjacent bits and words of control
memory. The bits which control the gate function of a cell occur in the same byte of
memory. With a 32-bit data bus this byte in four vertically adjacent cells can be
written simultaneously. In figure 6 the vertical columns labelled Func1 through Func 4
contain the gates whose functions are changed according to the lokup table - each
horizontal slice implements one 4-input LUT.

 There are 12x4=48 cells in each multiplier LUT which may need reconfigured if the
coefficient changes and 2 LUT’s for a total of 96 cells. Thus 24 write cycles are
required to completely reprogram the LUT’s or 960ns with a 50MHz clock.

Multiplier Performance
The multiplier has been simulated at 75MHz using the -2 speed grade. The equivalent
design on the XC4000E -3 grade runs at 65MHz (note that the speed grade numbering
system is different for the two families so this is a fair comparison). The cost is around
25CLB’s in the XC4000E and 280 used cells in the XC6200. Normalising for silicon area
approximately 10.6 XC6200 cells take the same area on the same process as 1 XC4000E
CLB: so the area is almost equivalent. The big difference between the designs is that
the XC6200 allows the coefficients to be changed in less than 1us where the XC4000E
would require that the entire chip be reconfigured which takes several ms.

XC4000 devices can support changing of LUT configuration data without
reconfiguring the chip by using the feature which allows user logic to address LUT
RAM. If this technique is used, however, significant additional logic must be added to
the user design to control the LUT RAM and to interface with the external source of
data (e.g. a microprocessor). Routing resources will be tied up routing between IOB’s
and the LUT RAM control logic. This circuitry is supplied ‘for free’ by the dedicated
processor interface on the XC6200.

Increasing Density
The design presented above is laid out to preserve regularity in order to make dynamic
reconfiguration to change coefficients fast and efficient. If longer reconfiguration
times can be tolerated it is possible to substantially reduce area by co-optimising the
logic of the groups of 12 LUT’s which share the same 4 inputs together. A simple
way of doing this is to notice that only 5 unique functions of the first two input
variables must be generated. There are 16 possible functions but the second 8 are the
logical inverses of the first and the inverse can be calculated by inverting the
corresponding multiplexer input in the second level of the tree. Of the remaining 8
functions 3 are trivial (ZERO,A0 and A1) and do not require a logic gate. Thus we
need only calculate the 5 non trivial functions and route these 5 functions and the two
input variables to the 12 sets of muxes to build the LUT. This requires 3*12+5=41 cells
rather than the 7*12=84 cells of the previous design, at the expense of having a
different routing pattern for each possible LUT. This will almost half the size of the
XC6216 design while still allowing coefficients to be changed much faster than the
XC4000E. Further reduction in gate count to 30 gates for the worst case coefficient is
possible with more complex logic optimisation algorithms.

Summary
This paper has shown that the XC6200 fine grained multiplexer based FPGA’s can
implement LUT based functions almost as efficiently as state of the art LUT based
FPGA’s. In fact the fine grained FPGA can be more efficient when several lookup
tables have the same set of input variables, because it allows common logic used by all
LUT’s to be implemented only once.

 XC6200 devices implement the adder more efficiently than coarse grain devices which
allows the fine grain implementation of the multiplier to take almost identical area to the
coarse grain implementation even when common LUT logic is not optimised. The
LUT implementation techniques described here, and the results reported are specific to
XC6200. The available fine grain FPGA’s have significantly different functional and
routing resources and each may require a different approach to LUT implementation.

In addition the ability of the XC6200 architecure to dynamically reconfigure small
portions of the device very quickly makes the look up table based technique much
more attractive since coefficients or other parameters stored in the lookup tables can
be changed rapidly. The configuration values required for a particular coefficient can
be calculated rapidly on the fly from input data by a microprocessor - no complex CAD
tools are required.

References
[1] Xilinx Inc, “XC6200 FPGA Family Advanced Product Description”, Available from
Xilinx Inc. 2100 Logic Drive San Jose CA.

[2] Wayne Luk and Nabeel Shirazi, “Modelling and Optimising Run Time
Reconfigurable Systems”, Proc. IEEE Symposium on FPGA’s for Custom Computing
Machines, Napa CA 1996.

[3] Tom Kean, “Configurable Logic: A Dynamically Programmable Cellular
Architecture and its VLSI Implementation” Phd Thesis CST-62-89, University of
Edinburgh, Dept. Computer Science.

[4] Tom Kean and John Gray, “Configurable Hardware: A New Paradigm for
Computation”, Advanced Research in VLSI, Proc. Decennial Caltech Conference, MIT
Press 1989.

[5] Ken Chapman, “Fast Integer Multipiers fit in FPGA’s”, EDN 1993 Design Idea
Winner, EDN May 12th 1994.

