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Abstract

At present there are two main paradigms for computation: interpretation of
a data stream representing a program by a processing unit (software) and an
interconnection of active logic elements (hardware). While both systems can (given
reasonable definitions) be shown to be equivalent in terms of which functions they
can compute they have radically different properties: hardware can potentially
provide a much higher performance implementation of a single simple algorithm
whereas software can implement a wide variety of extremely compliex algorithms.
Here we will consider a third paradigm for computation - configurable hardware
- in which the interconnection between the active logic elements is dependant on
a control store. This paradigm can potentially offer many of the performance

advantages of hardware while retaining much of the flexibility of software.

This thesis examines the general properties of configurable systems and exam-
ples of previous designs in order to develop a new cellular-array architecture called
Configurable Array Logic (CAL). The implementation of this architecture a re-
lated statically-programmed system, the Configurable Logic Array (CLA) in VLSI
are discussed. The potential of the CAL system for implementation using Wafer
Scale Integration is considered. The CAD system which would be required to allow
algorithms expressed in normal programming languages to be implemented on the
cellular architecture is discussed and the tools developed during the course of the
project are covered. Four example designs using the system are presented: a dig-
ital stopwatch, a Data Encryption Standard (DES) encryptor, a unit to compute
the 3-4 distance transform (which is used in image pattern matching) and a sketch
of a system using configurable logic to implement cellular-automaton models for
fluid-flow simulations. Finally, methods of extending the Configurable Logic archi-
tecture to allow more complex computations to be performed and other directions

for further research are discussed.
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Chapter 1

Introduction.

At present there are two main methods of implementing algorithms: interpretation
of a data stream representing a program by an active processing unit (software)
and interconnection of active logic elements (hardware). In one case the compu-
tation performed is dependant on data stored in memory and in the other on the
interconnection between a set of physical devices (transistors). Both paradigms
can be shown (given reasonable definitions) to be essentially equivalent in terms
of the functions they can compute (see, for example, [Savage76]). In this chapter
we will examine the strengths and weaknesses of these paradigms and make the
case for a third paradigm: Configurable Hardware in which the interconnection
between active logic elements (and hence the function computed) is dependant on

a control store.

1.1 Software.

The traditional computer architecture consists of a complex processor connected
to a very large memory containing both program code and data. This architecture
is extremely powerful and has allowed the development of today’s complex infor-
mation processing systems. The use of a single processor, however, results in a
fundamental limitation on the performance of such computer systems since there

are physical (light-speed) limitations on the speed of individual components. These
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limitations are starting to be approached by current technologies and ‘parallel’ ar-
chitectures with multiple processors which avoid this bottleneck by performing

many operations at the same time are becoming important.

Let us consider the potential performance of a software implementation of an
algorithm versus a hardware one: we can see many areas in which the hardware

implementation is guaranteed to be faster and more efficient.

1. Instruction Fetch/Decode. In a hardware system the function is fixed so no

time or area is wasted storing, fetching or decoding instructions.

2. Word Length. In a hardware implementation operations on single bits can
use bit wide units and operations on 64 bit words 64 bit wide units: in
software both operations would probably use 32 bit wide units resulting in

an area penalty in the first case and a time penalty in the second.

3. Calculation Efficiency. In a hardware implementation calculations can be
done using tailored hardware units which use the most efficient possible gate
level implementation of a function: in software computations must use a
series of predefined instructions. For example, a five way comparator could
be implemented as a single hardware unit whereas a software system would
usually need to use 4 two way comparison operations. Similarly, a general
purpose software processor will often have a large amount of hardware to
support instructions not required by the current computation (e.g. floating

point units in a text processing application).

4. Memory Size. General purpose computers must provide memory systems
large enough to support the algorithm with the worst case memory require-
ments: thus most algorithms will not make full use of the available memory.
Hardware systems, on the other hand, can provide exactly the memory re-

quired by the current algorithm.

All of these problems are readily surmountable in a single processor system

Wwhere it is economic to provide the extra resources: they are much more significant
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in a parallel computer system where as well as providing as much memory and
computation as possible in each processor node one also wishes to provide as many
nodes as possible. There does not seem to be any reasonable way of getting round
this problem and all current systems which provide a large number of conventional

processing nodes are in the supercomputer price range.

1.2 Hardware.

In recent years many hardware implementations of important algorithms have been
suggested (see, for example, the bibliography in [Wolfram86]). These take advan-
tage of the factors mentioned above to provide huge speedups over conventional
serial and parallel computers. Direct hardware implementation of realistic algo-
rithms has only become feasible with the advent of Very Large Scale Integrated
(VLSI) circuit technology and the recent advances in CAD tools which have made
possible the Application Specific Integrated Circuit (ASIC). In this section, there-

fore, we will consider hardware as being synonomous with VLSI circuits.

Despite the enormous performance advantages of hardware over software these

systems are not without problems.

1. ASIC’s are hard to design well. To get maximum utilisation of the silicon
area available a detailed knowledge of VLSI design techniques is required.
Array structures designed at the mask level can sometimes provide huge

savings.

2. ASIC’s are expensive to build. ASIC’s are very expensive in low volumes
because of the high capital cost of processing equipment and the relatively
large per-design cost caused by different handling requirements and mask-
making. Even when direct-write electron-beam machines are used to elimi-
nate mask-making large amounts of computer time are required to determine
patterning information and the expensive electron-beam machine is tied up

for a considerable time on each chip. This makes prototyping ASIC’s costly.
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3. ASIC’s designs are hard to verify. The complexity of ASIC designs means
that a huge amount of CPU time is necessary to simulate them at gate or
transistor level on a serial computer. Catalogue part designs are usually pro-
totyped rather than simulated at low level. Simulation times on conventional
computers cannot be expected to improve with technology since, in general,
the technology being used to develop a new ASIC (and hence its complexity)

will be ahead of the technology used in the computer it is simulated on.

4. ASIC’s are hard to test. When designing with catalogue parts the engineer
expects the manufacturer to test the parts before they are shipped: he can
assume that the parts he uses are all good. In most cases the problem of

testing for chip production faults can be ignored.

Every new ASIC design, on the other hand, must have a set of test vec-
tors determined for it: this usually involves fault simulation to test that a
particular set of test vectors exercises all internal nodes in the design. De-
termination of appropriate test vectors requires detailed knowledge of the
design and so it must be done by the systems engineer: this is an additional
and time consuming task. Automatic test pattern generation programs cou-
pled with a suitable design methodology can ease this problem but they are
not a complete solution. Such programs work with gate-level descriptions
rather than mask level ones and so must still be used by the system designer.
Efficient automatic test pattern generation is only possible for certain classes
of sub-components, notably combinational logic blocks, the systems engineer
must integrate automatically generated and manually generated patterns for

subcomponents into a test set for the whole design.

5. ASIC’s are hard to change. ASIC designs are hard to change because every
change, however slight, involves redoing the verification steps, determining a
new set of test vectors and producing a new design for fabrication. Incremen-
tal design systems could reduce the verification and test pattern generation
overhead but there is a strong motivation to rerun these steps completely

to make absolutely certain the design is correct before fabrication. Fabri-
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cation itself will take several weeks and several thousand dollars. Changing
a software design, on the other hand, is as easy as altering data within the
computer’s memory - although, in many cases test examples will also be run

before the altered software is ‘released’ to outside users.

6. ASIC’s are outside your control. With a catalogue part system the devel-
opment engineer has all the parts he needs in store before he starts. If he
is unsure about how a subsystem will behave he can breadboard it and see
what happens. ‘Suck it and See’ is preferable to formal verification for the
average systems engineer. There are sound reasons for this preference: you
get results faster and the results are more meaningful. Building a system
and watching it work gives much more confidence than looking at simulation
results on a computer. When an ASIC is to be used as a subcomponent in
a larger system the problems are worse because it may be impossible to get

a good simulation model of the behaviour of the surrounding system.

The problems discussed above all stem from three basic properties of ASIC

technology:
1. The customisation of ASIC’s is static and involves expensive processing.
2. The structure of ASIC’s is irregular and problem specific.
3. ASIC’s have a small range of application.

It is important to note, however, that at the present state of VLSI technology
none of the above problems are insuperable with proper CAD tools and ASIC
technology has allowed the development of many extremely complex new products.
The question is whether ASIC technology can continue to provide access to the
considerable potential benefits of VLSI as device sizes continue to get smaller and
we move towards Wafer Scale Integrated systems or whether a new design style

will be required.
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1.3 Configurable Hardware.

In this section we will consider a third paradigm for computation: configurable
hardware. In this system the interconnection of active logical elements is deter-
mined by a control store. This potentially provides much of the performance of

dedicated hardware with some of the flexibility of software.

1. Instruction Fetch/Decode. In a configurable hardware system the ‘instruc-
tion’ word which determines the interconnection of logic elements is normally
loaded before the computation starts and remains constant throughout the
computation. Thus, in most cases, there is no instruction fetch overhead

during the computation phase.

2. Word Length / Calculation Efficiency. Like conventional hardware config-

urable hardware can use units tailored exactly to the computation required.

3. Pipelining. Configurable hardware systems can take advantage of pipelining
and other parallelism available in the algorithm at the bit level often resulting

in very large performance gains over conventional computers.

4. Reusable. Unlike traditional hardware configurable hardware can be recon-
figured an unlimited number of times to compute different functions. This
flexibility is not as great as that of software since the functions which can be
computed will be heavily constrained by the amount of configurable hard-
ware available and the input/output connections to it which are both fixed
for a given system. The additional flexibility will, however, make it economic
to provide relatively large amounts of configurable hardware within a com-

puter system since the cost can be spread over many different applications.

Naturally, the ‘hybrid’ configurable hardware technology has also many disad-

vantages.
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1. Speed. Configurable Hardware will always be considerably slower than con-
ventional hardware because of delays introduced by the switching system.
Often this drawback can be reduced since it will be economic to use better
processing technology in the re-usable configurable system. Increased area

can usually be traded for speed, for example, by providing extra parallelism.

2. Area. The overhead of the control store and switching circuits means that a
large increase in area over conventional hardware is unavoidable. This over-
head will be especially large in memories which are normally implemented

as array structures designed at the mask level.

3. Flexibility. Configurable Hardware cannot approach the flexibility of conven-
tional processors for complex computations. In general, it is most suitable
for simple ‘inner-loop’ computations with high repitition counts which could

be considered for implementation in conventional hardware.

Because of these drawbacks Configurable Hardware is not seen as a replacement
for either conventional software or hardware but as an alternative system which
could potentially implement some important applications more efficiently than
either of the previous techniques. Three particular target application areas have
been identified: any one of these would, in itself, justify the development of the

Configurable Logic system.

1.3.1 EPLD Replacement.

At the moment there is a very large market for Electrically Programmable Logic
Devices (EPLD’s) in board level systems. These devices can simplify design, re-
duce package count (by replacing several small TTL devices) and provide extra,
flexibility by allowing changes in circuits to be made without changing Printed
Circuit Board (PCB) layouts. As time progresses the fraction of systems imple-

mented using programmable devices is increasing.

At present, this market is dominated by two-level AND/OR Programmable

Logic Arfay (PLA) devices although some more general gate-array like architec-
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n | Num. Inputs | Num. Outputs | Single PLA | Many PLA’s
112 2 3 3

214 3 11 6

3|6 4 37 9

4138 ) 5 12

Table 1-1: Number of Product Terms vs Number of Inputs in Adder.

tures are emerging [Xilinx86]. Two level architectures are fundamentally inap-
propriate for implementing complex systems: as device densities increase all that
you can do is increase the number of inputs, outputs and product terms available.
Table 1-1 shows how the number of product terms (after minimisation) increases
with the number of inputs in an adder when it is implemented as a chain of one
bit adders and as a single n bit adder: clearly simply increasing the size of a single
array is not a practical way of building large adders. Instead, the function must
be partitioned into many different functional blocks: often designed using different

techniques. This requires a more general programmable structure.

1.3.2 Prototype System for ASIC’s.

Systems designed using the configurable architecture developed in this thesis can
also be mapped efficiently to both semi-custom and full-custom silicon implemen-
tations. The dynamically programmable technology provides an ideal breadboard-
ing system for designs which will eventually be implemented in silicon, allowing
prototype designs to be tried out within the target system (although clock rates
may have to be reduced). Directly implementing the function using dynamically
programmed devices provides logic simulation at speeds which even the most ex-

pensive hardware accelerators cannot approach at relatively low cost.
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1.3.3 Algorithm Machine.

This application is more of an exciting possibility than a proven capability. It
will be shown (in Chapter 5) that a huge array of configurable cells can be built
using wafer scale integration. Eight wafers of configurable chips designed using
1pm rules would give a 1M (2%°) cell array. The question of ‘virtualising’ such
arrays to provide many potentially very large ‘logical’ arrays from a single physical
array will be addressed in Chapter 8. What can be done with this amount of
logic? Hopefully, systolic algorithms for applications like sorting, priority queues,
searching and signal processing can be mapped onto the cells. This seems to
make much more sense than having different special purpose processors for each

application where hardware acceleration is required.

1.4 Overview of Thesis.

1. Chapter One. This chapter has covered the basic ideas behind configurable
hardware and suggested target applications for the configurable architecture

to be developed in the rest of this thesis.

2. Chapter Two. This chapter takes a ‘high level’ look at the resources available
to implement configurable hardware and the different ways in which they can
be utilised. Metrics are developed for measuring the efficiency of architec-
tures and the limitations of the current two-level logic EPLD’s are examined
in detail. The effect on utilisation of increasing the generality of the basic
cells in Programmable Logic Arrays is examined to motivate the search for
more flexible architectures. Finally, a discussion of timing disciplines for use

in programmable systems is presented.

3. Chapter Three. This chapter concentrates on the design of flexible config-
urable systems. A mapping of the design space is set out and new cellular

architecture called Configurable Array Logic (CAL) is proposed. This map-
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ping of the design space is then used to compare the present design with

several important earlier designs.

4. Chapter Four. This chapter deals with the VLSI implementation of the cel-
lular architecture presented in Chapter 3. The design of the control store
and switching strugiure are developed in detail with several possible imple-
mentations being considered. Design and performance figures for leaf cells
designed to implement CAL are given as well as possible improvements to
the design. The way in which the design will scale with improving technology

is discussed.

5. Chapter Five. This chapter will discuss specific implementations of the con-
figurable logic architecture in VLSI. Firstly, a chip implemented using the
leaf cell layouts of Chapter 4 is presented and the methods adopted to verify
the design and algorithms to test fabricated chips are discussed. Secondly,
a statically programmed version in which the cellular array is configured by
the second metal mask (the CLA) is dealt with. Thirdly, a proposed exten-
sion of the VLSI implementation of CAL described in Chapter 4 to Wafer

Scale Integration is covered.

6. Chapter Six. This chapter deals with CAD tools for the Configurable Logic
system: the CAD system required to convert conventional high level lan-
guage programs into configurable logic designs is mapped out and potential
problems discussed. The purpose of this chapter is to show that algorithms
developed for silicon compiler systems can readily be adapted for cellular
systems and that it should be practical to integrate support for configurable
logic into an existing silicon compiler environment. CAD tools developed
during the course of the project to support the design examples in chapter
7 are also covered. Two major tools are treated in detail: a logic synthesis

program and a channel router.

7. Chapter Seven. This chapter covers examples of the application of the con-

figurable logic technology. Four examples are covered: a digital stopwatch
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chip, a Data Encryption Standard (DES) [NBS77] encryptor, a unit to com-
pute the 3-4 distance transform (which occurs in image pattern matching)
and a design sketch for a system to implement cellular-automata models
used in fluid-flow simulations. The first example is typical of the sort of
application in which CAL could be used as an EPLD replacement and has
been implemented using several different technologies. Area comparisons are
given to show where configurable logic fits into the design space. The second
example is a much larger system which requires many CAL chips built into
a larger array at board level. This example illustrates the applicability of
CAL to the prototyping of ASIC’s or as an accelerator for conventional com-
puters. The third example is intended to illustrate the use of configurable
logic to accelerate ‘inner-loop’ computations in conventional algorithms. The
fourth example illustrates how configurable logic can be used to implement
a particular cellular-automata model: cellular-automata are becoming in-
creasingly accepted by the physics community as models for a wide range of

phenomena.

8. Chapter Eight. This chapter draws together the research presented in the
preceding chapters and sets out possible directions for further research. A

design for a ‘virtualised’ configurable logic system is outlined.



Chapter 2

Principles of Configurable Systems.

This chapter develops a gate level model of configurable systems. Based on this
model some fundamental measures of the efficiency of configurable systems are

presented.

We then turn our attention to the central design goal of our architecture: the
efficient realisation of ASIC size systems and the implications of the generality of

this goal on implementations are examined.

The chapter concludes with a discussion of timing disciplines for such pro-
grammable systems. This is an area which has received almost no attention in the

past.

2.1 Circuit Model.

At this point it is advantageous to have a more formal model of circuits. This
will allow fundamental bounds on the cost of implementation to be found. The
question of at what level to model the circuit is a difficult one. There are two
main options: gate level and switch (transistor) level. The second option is nearer
the implementation and reflects the fact that the configuration circuitry and the

logic circuitry are both made up of switches. It has, however, some important

disadvantéges.

13
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1. Convenience. Most systems engineers prefer to design using logic gates rather
than switches and all configurable systems to date operate at this level of
abstraction. This has the consequence that the functions realised are over
{0,1} instead of {0,1, Z}. At this level of abstraction wires have a direction

and a single source.

2. Directions of Signal Flow. When designing configurable systems it is impor-
tant to take account of the fact that the tranmsistors which implement the
switches are far from being ideal components. It is reasonable to impose an
additional rule that no path may go through more than a small number of
switches without buffering to restore logic levels. The introduction of buffer-
ing forces a direction on wires, this can be ignored in a gate level abstraction

but the buffers would need to be explicitly modelled at the switch level.

3. Implementation Tricks. As we will see in Chapters 3 and 4 there are many
important low-level techniques which can be used to increase the efficiency
of implementations. At first glance it would seem that switch level models
would be a better choice to describe such circuit structures. This is not the
case since they often rely on additional properties of physical implementa-
tions such as resistance and capacitance and require analogue rather than
digital techniques to model properly. Simple equivalent gate level circuits
can be found and it is much easier to develop a clean and self-consistent gate

level model of general hardware than it is to develop a switch level one.

2.1.1 Definition of Circuit.

We are considering a circuit as being an interconnection of gates, without loss of
generality we can assume that all the gates have two inputs and one output. These

gates implement a function g chosen from a basis set @ = {g: {0,1}%> — {0,1}}.

A c gate circuit C can be modelled as a graph C = (G, W) where the gate set

G is an enumerated set of two input gates (vertices) and the wire set W is a set



Cb;gpter 2. Principles of Configurable Systems. 15

of connections (edges). The gate functions ¢ are chosen from the basis set Q so

G=1{(39):9i € 2,0 <L <c}.

The wire set W is more complicated: each member of this set is a tuple
(source,sink) representing a connection between gate outputs (or circuit inputs)
and a gate input or circuit output. A source may take part in several such tuples
(since a gate output will often drive several gate inputs) but a sink may take part in
at most one tuple (since connecting several sources together is not allowed in a gate
level model). We can, therefore, specify the wire set W by enumerating the sources
for every gate input. If we label each gate using the integers from 1 to ¢ then we
can label all possible sources by using 1...c to represent the output of the corre-
sponding gate. Similarly the sinks can be labelled using integers from 1...2¢+ 1
(since there are two inputs per gate). Thus W = {(¢,7): 0 < i < ¢,1 <7 < 2¢},
where no two members of W have the same sink j. Unconnected sinks or sinks
which are circuit inputs have no corresponding entry in W. An alternative way to
model the wire set W would be as an array containing the sources for each sink

with a special nil value for unconnected sinks.

There are several points worth making about this model of circuits.

1. Inputs and Outputs. This model does not represent circuit inputs and out-
puts in any way: circuits are treated as interconnections of gates. Some
gate inputs and outputs may be unconnected. The reason for not treating
inputs and outputs explicitly is to provide a notion of ¢ gate circuit: if the
n inputs and m outputs were modelled then we would need to think about
(¢,n,m) circuits and the size of the circuit could be increased arbitrarily just
by adding more feed through connections between inputs and outputs. A
model which dealt with inputs and outputs explicitly might allow a more
complete analysis but would complicate the mathematics. Note that we do
not require the graph to be connected, i.e. a circuit can be composed of

several unrelated subcircuits.

2. Wire Model. The definition of edge nodes prevents gate outputs being con-
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nected together. A single wire in the physical circuit connecting a gate

output to many gate inputs is modelled by many edges in the graph.

3. Two Input Gates. In physical circuits gates with a fairly arbitrary number
of inputs are possible, however the area of the gate increases linearly with
the number of inputs. An s input gate can always be replaced by a network
of 2 input gates so there is a reasonable algorithm for converting physical
circuits into our model. Counting two input gates is a better cost metric than
counting gates with arbitrary numbers of inputs since it directly reflects the

area required.

Equivalence of Circuits. In simple terms two circuits are equivalent if the
same gate functions are connected in the same pattern. Specifying this formally
is complicated by the fact thithe labellings of gates used in the circuits may well
be different: for example a NAND gate labelled 3 in one circuit may be labelled
16 in the other and a wire from the output of that gate could be (3,25) in the
first circuit and (16,30) in the second. If the two circuits are equivalent then if
we replace all the 16’s if the second circuit with 3’s and so on for the other gate
numbers then we will end up with two identically labelled graphs. This will not
happen if the two circuits are not equivalent - for example if there was an extra

connection from the NAND gate in the second circuit.

More formally, two circuits C; = (G, W) and Cy = (G4, Ws) are equivalent if
and only if there exists a one to one and onto mapping p between gate labels in
Cy and gate labels in C; such that G; = G and Wy = W, where G = {(u(z),9:)}
and W; = {(u(2), p(jdiv2) + (jmod2))}.

Containment of Circuits. A circuit is contained within another circuit if it is
equivalent to part of the second circuit. More formally, circuit C; is contained in
circuit Cy if and only if there is a one to one (but not necessarily onto) mapping

between labels in C; and labels in Cy such that G;, C Gy and W; C W, where
Gy = {(u(3), 9:)} and Wj = {(u(3), u(jdiv2) 4 (jmod2))}.
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Subtraction of Circuits. Based on the idea of containment above we can define
what it means to subtract a subcircuit from a larger circuit, informally we delete
all the gates and wires corresponding to the subtracted circuit. If C; is contained
in Cy then Cy — C; = (G — G, Wy — W) where G = {u(i),g;} and W} =
{(6(2), u(5div2) + (jmod2))}.

Composition of Circuits. A circuit C is composed of circuits Cy, Cy,C3,...,C,

if and only if (((C = C1) = C2) = C3) — ... — C) = (0, ).

2.1.2 Definition of Configurable Circuit.

A configurable circuit PC is modelled as the quadruple (G,5,W,V) where G is
a set of gates as above S is an enumerated set of selectors (or multiplexors)
5:(Toy .-y Znyt) = 25,0 < 2 < myn = 27,W is a set of wires as above except
that selectors can now be used as sources or sinks and V is a control vector which
selects the sources chosen by the selectors. Every bit of V' is connected to exactly

one selector control input.

Definition of Emulation. A configurable circuit PC with control vector V
emulates a circuit C if when all the selectors in PC are removed and all edges
in PC with a selector as source are replaced by edges with the selected input
as source then the circuit C is contained in the resulting circuit. Note that the
circuits do not have to be equivalent because not all the resources in PC need be

used.

2.1.3 Definition of c-CLM.

A ¢ gate Configurable Logic Module ¢-CLM is a programmable circuit which,

according to a control vector V will emulate any ¢ gate circuit as defined above.
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Figure 2—1: Architecture which meets lower bound.

2.1.4 Lower Bounds.

Gates. Obviously, a c-CLM must contain at least ¢ gates.

Inputs and Outputs. A ¢-CLM must contain at least 2¢ inputs and ¢ outputs
(consider a circuit where every gate computed a function of two different input

variables).

Memory. If we count the number of ¢ gate circuits then we can easily determine

the minimum amount of memory needed to control a c-CLM.

From the definition of circuit it follows that each sink is connected to at most
one source: there are 2c + 1 possible sinks (2c gate inputs or unconnected) and
¢ + 1 possible sources (¢ gate outputs or unconnected) so there are (2¢ + 1)°+!
possible interconnections. We must also consider the number of possible functions

which each gate can perform ||, giving a total number of circuits |Q2|(2¢ + 1)°*1,

This implies that at least
lg(1Q1(2¢ + 1)) = 1g(12) + (c + 1)(lg(2¢ + 1)) = O(clg(<))

bits of RAM will be required to control a c-CLM.
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Surprisingly, perhaps, there is an architecture which obtains this lower bound
(Figure 2-1). This architecture is not practically interesting for circuits with large

numbers of gates since it requires global wiring for each net.

2.1.5 Circuits and Functions.

The function performed by a circuit can be represented as f : {0,1}* — {0,1}™,
where n is the number of inputs and m is the number of outputs. In order to decide
what function a circuit computes one must identify input and output terminals
on the circuit. There are now 2¢ + m + 1 (unconnected outputs are still possible)
sinks and ¢+ n +1 possible sources giving |Q|(2c+ m 4 1)°*"*1 possibilities. Many
of these possibilities may compute the same function. Determining whether two

distinct circuits compute the same function is a difficult problem.

It may seem more natural to count distinct functions rather than distinct

circuits but there are good reasons for our choice.

1. Different Realisations are Useful. In a general configurable device it is de-
sirable to be able to implement the same function in several different ways:
for example there are many possible implementations of the addition func-
tion and designers will want to select one with appropriate delay and area
for their system. This is to be contrasted with previous architectures where
the configurable system was intended to implement one block of random
logic: here multiple realisations of a given function would be considered an

efficiency overhead.

2. Number of Boolean Functions. There are 22" combinational functions f :
{0,1}* — {0,1} and (2™)¥" functions f : {0,1}™ — {0,1}™. The explosive
growth in the number of functions means that almost all n input combi-
national functions require O(2") gates to implement [Savage76,Shannon49).
This implies that defining CLM’s in terms of computing all functions of n

variables would place circuits of very different complexity in the same cat-
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egory. Counting gates gives a much better indication of device size than

counting input variables.

3. Sequential Circuits. The general interconnection of gates permitted by our
circuit model allows latches to be built, therefore some of the circuit per-
mutations correspond to sequential rather than combinational logic. This
makes counting functions impossible (since such a circuit could emulate a

Turing machine with sequential logic providing the ‘tape’).

2.2 Efficiency.

The most important measure of the cost of a one bit wide configurable circuit
is the number of bits of control store. There are two important reasons for this:
firstly the control store is likely to account for a high percentage of the total area
and secondly the size of the data-path will normally scale almost exactly with
the number of bits of control store. This is because the width of the control
vector means that there is no possibility of implementing the two separately with
interconnecting wires: they must be intermingled in the same structure so that

each bit of control store is situated close to the switches it controls.

2.2.1 Efficiency of Configurable Circuits.

We wish to define efficiency in terms of the ‘value’ we get from each bit of the
control store: for maximum efficiency we would expect each permutation of the
control vector V to result in a different circuit being emulated. We can formalise

the idea of different circuits as follows.

Definition of Distinct. Two permutations of a configurable circuit with control
vectors V; and V; are distinct if and only if the two emulated circuits C; and C,

are not equivalent.
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Figure 2-2: Wasted Signals.

Thus, we define the efficiency E of a configurable circuit which realises n dis-
tinct circuits with a control vector of length |V| as
lg(n)
E ===
\4
This gives E = 1 when every permutation of V' has a corresponding distinct

realisable circuit.

The purpose of this metric is to detect wasted control signals, figure 2-2 shows
examples of wasted signals. In figure 2-2a control signals are wasted by having the
same data signal on more than one input of a multiplexor: a 2:1 multiplexor with
only 1 control line could realise as many distinct configurations. In figure 2-2b one

of the permutations is wasted by having an unconnected input to the multiplexor.

This definition of efficiency is intuitive but to make it useful for comparing
different configurable logic designs some method of computing it efficiently must
be available. The obvious method of generating all possible control signal permu-
tations and comparing the resulting circuits with each other is totally impractical
for larger circuits. We need some method of taking advantage of the regularity
Present in actual designs to reduce the amount of computation. We would also
like an efficiency figure for an architecture rather than an efficiency for a particular

fixed size circuit.

Let us consider programmable circuit PC' as being composed of identical pro-

grammable subcircuits or ‘cells’ pey, . . ., pcn—1. Let n(pc;) be the number of circuits
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emulated by pc; then the efficiency of PC is

2 lg(n(pei))

E(PC) < A

Discussion. Consider the number of control signals to PC, "% [Vi| (if control

signals were shared between pc; and pc; then we would consider them to be a

emytatdhle
single subcircuit). It remains to show that the number of circuits is not
) em u[«d‘ba’l?te-
increased by any fixed composition. When the number of circuits was
calculated for the subcircuits pey, ..., pc, then the input terminals were unknown

and assumed to be on different nets. Here, some of them will be on known nets
possibly the same as other terminals of the subcircuit: therefore the efficiency could
be smaller but since there are no more unknowns it cannot be larger. Figure 2-3

shows an example of a circuit whose efficiency is less than that of its subcircuits.

Architectural Efficiency. The efficiency of a regular array architecture E(A)
can be defined as the limit of array efficiency as the array size tends to infinity

(figure 2-4). Thus
EQ1) 2 E(4) 2 E(9) 2 ... 2 E(A).

Cell Efficiency. In many of the practical architectures we will be concerned
with the programmable structure is composed of an array of identical cells. In
this case the efficiency of the basic cell E(1) in figure 2-4 is a very important
parameter since it is relatively easy to calculate and is a reasonable predictor of

architectural efficiency.
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Figure 2—4: Architectural Efficiency.

2.2.2 Functional Efficiency.

Many programmable logic architectures have been designed to implement irregular
combinational functions such as those found in control stores. For such architec-
tures it is more appropriate to measure efficiency in terms of the number of distinct

functions realisable f as

lg(f)
E ===,
V]
These architectures usually have limited connection patterns and choices of gate

types so counting the number of functions implemented is sometimes feasible.

2.2.3 Utilisation.

As well as having a measure of how efficient a programmable architecture is in its
utilisation of control store it is tempting to measure the overhead in implementing
a particular circuit on a certain programmable structure. This sort of figure is very
easy to obtain since one just needs to add up all the resources used and divide by
the reéources provided. Utilisation figures can be very misleading since bad designs
which use unnecessary resources make the programmable architecture look better
by increasing utilisation. Similarly, poor designs of programmable architectures
will often force roundabout wiring paths (using more selectors) and have a higher
utilisation than good designs. For these reasons utilisation figures must be treated
with care. One important utilisation statistic is the cell utilisation which is the

ratio of cells used in a particular function to cells provided.
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Figure 2-5: FPLA Cell Designs.

2.3 Design Goals.

Before we go any further it is important to have a clear idea of what range of
application we want our configurable system to have. The central design aim is to
produce a configurable system which can emulate any system realisable using an
ASIC with only a ‘small’ increase in area and reduction in speed. Let us consider
exactly what this entails: the functionality of the ASIC can be described as a
function f : {0,1}* — {0,1}™. This immediately suggests an implementation:
any boolean function can be implemented using a Programmable Logic Array
(PLA) and there is a dynamically configurable equivalent technology the Field
Programmable Logic Array (FPLA). We will consider FPLA’s to be composed of
an array of two kinds of small flexible cell illustrated in figure 2-5. The first kind
makes up the AND plane and the second the OR plane. This is a fairly good
model for RAM based programmable PLA’s but is significantly different from the
normal fuse based FPLA’s where wires are undirected and very high fan in gates

are available.
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One important property of nearly all ASIC designs is that they are composed
of many functional blocks. Assume there are s blocks, each of these also realises
a function

gi: {0,1}™ = {0,1}™,0<i < s.

Each of these functional blocks may in turn be composed of other functional blocks

and the ASIC function f is a hierarchical composition of these subfunctions.

Let us consider the implications of this for an FPLA implementation. Define
the area function A(f) of an FPLA implementation of f to be the number of
cells used, this gives A(f) = p(f)(n + m) where p(f) is the number of product
terms (because the FPLA is a rectangular array (n+m) cells wide and p(f) cells
high). Let us assume that the subfunctions g; are disjoint (i.e. share no inputs or
outputs). The area for separate implementation is

-1

Z ((ny-' + mg,)p(g:))

=0
whereas the area for a single logic block is
s—1 s—1
A(f) = (Z(nyi + my&))(zp(gi))
i=0 =0
This is illustrated in figure 2-6. To simplify the analysis let us assume the subfunc-
tions are the same size so ny, +my = a and p(g;) = bfor all g;,0 < ¢ < 5. Then the
area of a separate implementation over the area of a composite implementation is
£ Alg) __s(ab)
A(f)  (sa)(sd)

Thus the area of a separate implementation increases linearly with the num-

1
T s

ber of functions s whereas the area of a composite implementation increases as
3? [Wood79). It should be noted that this is an average case analysis: it is easy to

find values which are better or worse.
Obviously, the analysis is incomplete: several other important factors must be

considered.

1. Overhead Circuitry. Each PLA will have some associated overhead circuits at

the edges: the costs for this scale better with the single array implementation.
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Figure 2—6: Area of Disjoint Functions Implemented in Single Array.

2. Functions are not completely disjoint. In an actual ASIC the functions im-
plemented by separate subunits will not be completely disjoint: they may use
outputs from other subunits as inputs or share inputs with other subunits.

Subfunctions can themselves be decomposed hierarchically.

3. Logic Minimization. Logic minimization algorithms have large computa-
tional complexity and much better results can be obtained for small subunits

than for a single large logic block.

4. Concurrency. Decomposing the function into many logic blocks provides the
potential for concurrent operation of blocks and pipelining between them.
The delay through a small block is likely to be lower than the delay through

a large one after some critical size is exceeded.

These considerations imply that if we wish to build ASIC size systems it is essential
to be able to implement subfunctions using separate blocks. This has important

consequences for the structure of such a device.
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2.3.1 Device Structure.

We have seen that in order to build a reconfigurable chip capable of efficiently
implementing whole systems several logic blocks will have to be available on the
chip. Some means of connecting these together to form the complete function will
be required. We have a set of s subfunctions g;,0 < i < s where s is unknown, p(g;)
is unknown m; is unknown and n; is unknown. In the most general case we cannot
say that n; < n and m; < m since the subfunctions will not be totally disjoint: it
is very common to find subunits in an ASIC with more inputs and outputs than
the chip itself. A first attempt at a solution would be to fix a maximum value
of 3,5 and put S identical logic blocks with fixed numbers of inputs,outputs and
product terms N,M and P on a chip with some interconnection structure between
them. If we split our function f into subfunctions which do not exceed any of
these limits then all is well although a potentially large amount of space will be
wasted by choosing worst case values of N, M, P (figure 2-7). We can calculate
the expected utilisation of each subunit for the case P = 2/: if we wish to ensure
that all N input functions can be realised then this is the decision we would have

to take. FPLA’s with all 2" product terms provided are known as PROM’s.

Utilisation of PROM. The average number of cells required in a PROM is
(N (M (n+m)2™)  2Y(M+2N—1)— M +1

n=1 m=1

MN N
(because there are M N possible sizes of PROM which fit into a 2V x (M + N)

array with 2V(M 4+ N) cells) giving an average utilisation of

U_2N(M+2N——1)—M+1_i+ N-1 M-1 1. 1
B N(N + M)2N "N N(N+M) N2N(N+ M)~ N N+ M

This assumes that subfunctions with n inputs require 2" product terms i.e. they

are implemented using smaller PROMS. We can see that as IV gets large on average
only about # of the PROM will be used: even this is a considerable overestimate
because most n input subfunctions will require much less that 2™ product terms.
The conclusion is obvious: large PROMS should be avoided at all costs. This
suggests that we examine the consequences of having subfunctions which overflow

fixed size subunits.
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Consequences of Overflow. Suppose that one of the subfunctions g; does not

fit - there are several ways in which this could happen.

1. Not Enough Outputs. This situation can be solved by using more than
one array and duplicating the inputs and product terms. This imposes a

considerable overhead.

2. Not Enough Inputs. Suppose there were t inputs too many. Then the prob-
lem can be solved using a t+1 input decoder and 2!*! subunits. The decoder
could be implemented using another subunit but for even moderate size ¢
there is a good chance of requiring too many outputs (since the number of

outputs grows as 2*). The overhead here is the decoder and the extra wiring.

3. Not Enough Product Terms. This is the most likely situation. Many func-
tions have large numbers of inputs and outputs but in the worst case 2"
product terms will be required. This situation can be worked round by us-
ing two arrays duplicating the inputs and OR’ing the outputs. The overhead
here is in the wiring necessary to move inputs and sub-outputs around the

chip.

4. Not enough Subunits. In this case multiple subfunctions can be combined

into a single array. This has the overhead discussed in the last section.

We can see, therefore, that the provision of many smaller fixed sized PLA units
to implement subfunctions does not provide the required efficiency to implement

large ASIC sized systems of a programmable structure.

2.3.2 Utilisation and Cell Generality.'

In this section we will investigate the effect of increasing the generality of the basic

cell on the utilisation of the array.

Row Folding. Suppose you had a single cell that could either form part of an
AND plane or part of an OR plane. If you built your S subunits from these cells
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you would no longer have to fix N and M but only N + M. Suppose further
that all S subunits were abutting each other. With such flexible cells the point
at which one array ended and another started would no longer need to be fixed.
We would not have to fix N,M and P for each g but only Y3/(N + M) and p
(figure 2-8).

Column Folding. If we assume that the cells can accept input and output
signals from both directions then the arrangement shown in figure 2-9 would be
possible. Here two subunits can share cells used in product terms. If the subunits
are arranged so that units with large numbers of product terms share with units
with small numbers the area is greatly reduced. Column folding can also be useful
when only one function is being implemented, especially when row folding is also

available.

Rotational Symmetry. The cell still does not cope well with situations where
the aspect ratio of some subfunctions forces large wastage of product terms. If the
cells can also form arrays in the orthogonal direction, then we can use layouts like
figure 2-10 saving many cells. We now have a situation where only the dimensions

z and y of an array of flexible cells need be specified in advance.

Internal Routing. The architecture presented up till now still has one flaw: all
routing happens at the edge of the chip. Signals will have to travel quite large

distances between subunits around the edge and the requirement that all routing
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is done at the chip edge does not allow full use of the central area. The cells
have been given fairly flexible routing abilities to support the previous steps and
with some slight modifications could implement the wiring areas themselves. This

allows layouts such as figure 2-11.

General Gates. The final step would be to note that because we now have
a flexible routing structure in each cell we are no longer limited to rigid PLA
like structures. Gate networks with multiple levels of logic are possible. As well
as possibly reducing gate count general networks of gates allow more control over
subunit aspect ratio. PLA structures have a fixed aspect ratio which as n becomes
large approaches a long thin rectangle (because the number of product terms grows
very quickly with the number of inputs). Control over aspect ratio of subunits can
result in more efficient floorplans. Even if we keep to PLA like structures the
more flexible cells give us much more freedom about where inputs and outputs
enter and leave the array, which can reduce the size of wiring areas. If we add
some additional logic functions as well as AND and OR to each cell then in some
important cases the number of gates required to implement a function can be
dramatically reduced: for example the parity function requires O(n) gates if XOR
is a,vailablé but O(n?) using only AND,OR and INVERT [SavageT76].
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Chapter 2. Principles of Configurable Systems. 392

Stage RAM Cells
FPLA 1 AND 1 OR
Row Folding 2

Column Folding 4

Rotational Symmetry | 7

Internal Routing 10
Functional Symmetry | 12

General Function 16

Table 2—1: RAM Cell Cost of Increased Generality.

2.3.3 Costs and Benefits.

All this flexibility in the cells has a cost. Table 2-1 shows how the number of bits
of RAM required to control the basic cell increases with its generality through
these stages. The area of one of these cells will be k£ times as great as the area
of the simple FPLA cell. The increase k£ will be quite large - maybe as much as
20 - but it is constant. The overheads with using a fixed cell vary with the size
of the problem and the particular function being implemented. It is easy to find
particular examples where this tradeoff is highly advantageous. In the previous
section we showed that the ratio of the area of a single array implementation to
a multiple array implementation of a function with multiple disjoint subfunctions
was about s where s was the number of sub-functions. This analysis did not take
into account the fact that the subfunctions themselves have to be packed into a
single large rectangular area. This packing cannot, in general, be done with 100%
efficiency but in order to approach this efficiency it is necessary to have flexibility
of subunit shape,placement and orientation. In this section we have shown that
the potential benefit of separate subunits can be realised by using an array of

flexible cells.
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2.4 Timing Discipline.

There are three possible timing disciplines worth considering for a configurable

system.

2.4.1 Self-Timed.

In this discipline [Seitz80] each cell generates explicit ‘go’ and ‘done’ signals which
are routed in parallel with the data signals. This discipline is very attractive since
it relieves the user of most of the timing problems associated with logic design. It

has two major failings.

1. Complexity. The cell complexity is much higher than that of cells using the
other two timing methodologies. Cell complexity increases design tirne and
crucially in an array structure layout efficiency (i.e. not only will more logic
be required because the function is more complex but it will be implemented

less area intensively).

2. Size. Because ‘go’ and ‘done’ signals also have to be transported about
individual cells are many times larger than cells with the same function
implemented in one of the other disciplines. As well as the wiring overhead
fairly large ‘concensus’ gates are required where wires split at multiplexors
and where functions are being computed to provide the extra control. A
trial layout of a cell design in the initial stages of this project suggested an
area overhead of about 3 times for a self timed system over a system with
no explicit timing support. This overhead makes the use of self-timed cells

unattractive at this time.

2.4.2 Clocked.

In this discipline the actions of individual cells are synchronised to a system clock.

If the cells are to be used as ‘smart-memory’ within a computer system this ma
y y
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be the technique of choice since it would allow a microprocessor to read and
write to internal nodes of a circuit implemented by the cells without disturbing
a computation being performed by the cell array. Note that these clocks do not
relieve the user of responsibility for clocking the implemented circuit to remove

timing hazards within it.

2.4.3 Pipelined.

This is an extension of the clocked design methodology and offers some exciting
possibilities. If all transfers within and between cells are synchronised to a single
fast system clock and additional store is provided at each selection position then
the system can be pipelined at a very low level. The additional store does not imply
an unacceptable overhead because storage is available on the gate capacitance of

the buffering inverters: only an additional pass-transistor is required.

2.4.4 Unsynchronised.

In this case the user is provided only with logic gates and takes full responsibility
for timing himself. This flexibility is necessary for cells which are to be used as

PLD’s. All previous cell designs have taken this approach.

2.5 Summary.

In this chapter we have examined the design of configurable systems. We have
introduced fundamental efficiency measures for comparing such systems. We have
also seen the effects of the design specification on the structure of such systems and
in particular that large arrays of flexible cells seem to be a very suitable structure.
We have described some possible timing schemes for such systems. In the next
chapter we will develop this further look at previous designs and introduce the cell

design which will be used in the rest of the thesis.



Chapter 3

Design of Configurable Systems.

In the last
veloped and it was shown that if general systems were to be emulated efficiently
then large numbers of small flexible units were more suitable than small num-
bers of large units. This chapter will concentrate on the detailed design of such

structures.

At present we are thinking about a configurable system as a set of gates with an
associated switching system and control store. We must now consider how to lay
out such a system on a planar silicon chip. We introduce the concept of function
unit: this is a physical realisation of a gate which can implement any function
chosen from a basis set . We will call a function unit and ‘closely associated’
routing circuitry a cell. As a first step we will assume that the cells of the system
are arranged in a grid as shown in (figure 3-1). This assumption is justified by the
practicalities of silicon design - it is almost forced if we wish to use high density
arrays for the control memory. At this stage we are making no assumptions about
what is contained in each cell (switching and gates) or that all cells are the same.

There are three important parameters to consider.
1. Connectivity between Cells.
2. Connectivity within Cells.

3. Function Unit Capabilities.

35
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Figure 3-1: Basic Grid of Cells.

It may seem that the distinction between within-cell and between-cell connectivity
is arbitrary: after all if we draw the cell boxes big enough then all the routing area
is within cells. The distinction is made from the user’s perspective where it makes
sense to consider long wires as being outside the cells and only interacting with

those cells which wish to use them as inputs and outputs.

3.1 Connectivity Between Cells.

This section will present the important design parameters in this area: these will

be used in later sections for comparison between different configurable systems.

Directions of Data Flow. If we are interested in emulating general circuits
then we can specify the following desirable capability: there should be a path
through routing multiplexors between any function unit output and the input of

any other (not necessarily adjacent) function unit. We must consider the minimum
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number of directions of data flow required to support this capability since each

additional direction can be expected to incur overhead in wires and switches.

If we wrap round wires at the edge of the array to form a torus then two
orthogonal directions suffice. Obviously, this method often requires wires longer
than the manhattan distance between the two cells. If signals running on grid
diagonals are available then three directions suffice, again this involves longer than
necessary wires. Without diagonals or wrap-round connections then all four grid
directions are required: this method can always route in the manhattan distance.
Additional directions of data flow potentially reduce wire length. Wiring schemes
such as hypercubes which make the array of cells logically n dimensional can be

viewed as providing additional directions of data flow.

Regularity. In systems composed of identical cells it is desirable that if the cell
box is expanded to include inter-cell connections as well then all the cell boxes
can still be identical. This would exclude, for example, systems with global wires
along every second column of cells. This property simplifies the user’s conceptual

model and reduces the complexity of the chip design.

Flexibility. This refers to whether the inter-cell communication forms a fixed
pattern or whether it has programmable selectors. Normally, fixed inter-cell con-

nection implies flexible intra-cell connection and vice versa.

Wire Kinds. There are two distinct kinds of connection commonly used.

1. Wired Logic. If a wire can be driven from several sources then the wire can
be used to compute a logic function. This can provide a very efficient means
of building a very high fan-in gate. It is especially useful in arrays intended
to implement a single logic block. The wire can be long and bidirectional
because it is unsegmented. This technique relies either on resistance of a pull
up device or capacitance in the wire to store charge. In CMGS technology

only NOR gates can sensibly be built using wired logic. Inputs and outputs
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can easily be inverted so by applying de Morgan’s laws you can emulate OR,
AND and NAND as well. There is an equivalent circuit in our gate level
model in which the single very high fan in wire is replaced by many fan-in

two gates.

There are fundamental limits on the size of such wired gates since the RC
factor of the wire increases with its length and there occurs a critical point
where increasing the size of driver transistors is no longer the best way to
reduce the delay [Mead80]. Instead, intermediate buffering must be used:

effectively breaking the gate up into several smaller ones.

2. Normal Wires. By normal wires we mean wires in which the control system
makes sure that only one source drives the wire at a time. If the wire is long
and has n possible connections to gate outputs then this poses a problem.
In theory only [lg(n)] bits of RAM are necessary to select the source for
the wire: however the distribution of the sources in space means that either
n bits of RAM are required, each bit situated adjacent to the switch it
controls, or at least [lg(n)] control wires must travel with the data wire.
The solution which uses additional RAM cells is more area efficient when

sources are widely separated.

3.1.1 Nearest Neighbour Connections.

In this case wires connect only adjacent cells, figure 3-2 shows some examples
of nearest neighbour schemes. Here all the wires are short and thus sources for
every wire are available close to each other allowing maximum efficiency in source
selection. Nearest neighbour connections suffer from long propagation delays when

long wires are built up from many small segments.

3.1.2 Nearest Neighbour with Longer Busses.

In this design additional longer wires are added to reduce the propagation delay

problem. These longer wires can be divided into three classes.
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Figure 3-2: Nearest Neighbour Connection Schemes.

1. Global Inputs and Outputs. These are signals which are fed to every cell in
the array or which can be driven by every cell in the array. Global input
signals are cheap and can be useful for critical signals such as clocks. Global
output signals are very expensive: every cell needs one bit of RAM per signal
to specify whether it is to drive it (there are far too many cells for routing the
control signals alongside the wire to be practical). Global output signals can
be useful, for example to allow the output of internal cells to be monitored
for testing/debugging purposes. Usually wired logic is used for global output
signals: this is the most efficient implementation and the logic function is

often useful in itself.

2. Array Crossing. These are signals which cross from one side of an array to
the other. Normally these signals run along rows or columns of the array but
Shoup [Shoup70] has pointed out advantages to running them at an angle.
These signals can be very useful in medium sized arrays where the whole
array is devoted to one function: they become less useful as the array size is
increased. Again input signals are cheap but output signals are expensive.

Normally, wired logic is used for output signals.

3. Medium Range. These are signals which travel further than just a cell’s
nearest neighbour but not across the whole array. These signals are mod-
erately expensive because of the source selection problem but their greatest

fault is that they make the array less regular and complicate the process of



Chapter 3. Design of Configurable Systems. 40

design using the array. The justification for including such signals would be

the decrease in propagation delay caused by having longer unswitched paths.

3.1.3 Wiring Channels.

In this section we will consider a switching system based on the traditional pattern
of function units and wiring channels used in gate arrays (figure 3-3). Figure 3-
4 shows a ‘close up’ of the channel: wires travel horizontally on one ‘layer’ and
vertically on another. At the ‘X’ points wires can be broken or contacts can be

placed to link the two layers.

The advantages of this structure in silicon come from the fact that the ‘switches’
are free. They represent only the presence or absence of a wire or a contact hole
in an insulating layer: closed switches contribute minimal additional resistance
to the circuit. It is possible, therefore, to have long, possibly bidirectional, wires
for low propagation delay or lots of short wires. Bidirectionality is only useful if

switches as well as logic gates can be implemented by the function unit.

The goal of the switches in a programmable system is to implement the most
general connectivity possible between the function unit inputs and outputs while
still being reasonably small. There is no reason to suppose that a direct copy of
the gate array wiring channel structure is the best way to achieve this. Firstly,
let us consider the most general system. We will consider bidirectional wires: the
number of connection patterns is the number of different ways of putting n objects
into n sets some of which can be empty. The number of ways of putting n objects
into p sets none of which are empty is Stirling’s second coefficient {3} (Knuth73],
so the figure of interest is Y_7_,{%}. We can calculate this numerically for the 4 by
5 wire example in the figure - this is of interest because switching boxes of this size
are used in one of the commercial EPLD’s - the result is about 6.82 x 10'°. This is
just less than 2% so, theoretically, as few as 36 bits of RAM could suffice to control
it. Larger switch matrices are likely to require internal buffering to overcome the

combined resistance of series transistor switches.
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Figure 3-3: Basic Gate Array Floorplan.

Figure 3—4: Detail of Wiring Channel Structure.
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Figure 3—-5: Wire Crossing Switching Functions.

Let us consider the implementation of such a switch using a wiring channel like
structure. We assume that the switch is composed of identical blocks situated at
the ‘X’ points on figure 3-3. Two reasonable designs for these blocks are given in
figure 3-5. In both cases one RAM cell per switch would be required. The first uses
three switches and is intended to emulate the wiring channel structure exactly: Sy
and S; represent possible cuts on the two ‘wiring layers’ and S5 a possible contact
between them. The second structure provides all possible connections between
the inputs to the block. These structures can only provide a small fraction of
the possible permutations because of ‘blocking’ within the switch, for example in
figure 3-6 the connection from A to B cannot be made. Despite this, in the three
switch case 60 RAM cells are required and in the 6 switch case (which is less
susceptible to blocking) 120: both of these figures are well above the information

theoretic bound for the general switch.

This switch model has assumed that the wires are bidirectional: this does not
mean that user designs can contain bidirectional wires only that the direction

of a particular wire is determined by the control store. If we avoid specifying
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the direction of a wire until the chip is programmed then circuits of the form of
figure 3-7 will have to be used (analogue techniques which attempt to ‘sense’ the
direction of signal low would probably require more space and would certainly be
slower and less reliable). Depending on path length through the switch matrix,
performance goals and process parameters switchable buffers could be required
on all matrix inputs, all matrix outputs or both inputs and outputs. In effect
we have traded a lot of control store for fewer wires. A system which supported
true bidirectionality would have to have an additional user generated control signal

associated with each bidirectional wire to specify its direction to the buffer circuits.

Now let us consider single direction wires: if there are n inputs and m outputs
then there are m™ possibilities. With 18 inputs and 18 outputs (as in a 4x5
switch with each bidirectional wire replaced by two single direction wires) we
would have about 3.93 x 10?2 possibilities. These switching patterns can be realised
using m, n : 1 multiplexors controlled by m{lgn] = 18 x 5 = 90 bits of RAM.
Multiplexors can be laid out very efficiently and have the important property that
the number of switches any signal must pass through is limited and is the same for
all permutations: in channel structures some paths might have to ‘snake’ around
to avoid blocking. In fact, it might well be necessary to forbid such snaking
for electrical reasons (since every switch will have considerable resistance and
buffering within the switch matrix is undesirable), further reducing the number of

implementable permutations.

The above argument has demonstrated that wiring channel like switch matri-
ces are an extremely ineflicient structure for programmable parts which use high
impedance transistor switches controlled by relatively large RAM memory cells.
Far greater efficiency can be achieved by fixing the direction of wires and using
multiplexors. Multiplexor based designs are also easier to use since all permuta-

tions are provided and there is no need to worry about blocking.
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3.2 Function Unit Design.

The first thing to consider when designing a function unit for programmable cells
is how many inputs it will have. We can assume that the function unit will have
exactly one output and consider cells which have several output functions as having

several function units.

3.2.1 Combinational Complexity.

At this point it is worth quoting some important results from combinational
complexity theory which will help in the design of function units. This dis-
cussion is a very condensed version of the treatment in [Savage76]. The com-
putation performed by any computing system can be represented as a function
f:{0,1}* — {0,1}™. The combinational complexity with fan out s of f over
the basis set {2 (consisting of switching functions with fan-in r) is denoted C, o(f)
or C,(f) where Q is understood, is the minimum number of computation steps
required to compute f with a chain over  with fan-out s and with data-set
T = {21,23,...,%,,0,1}. If such a chain does not exist C, g is not defined. The
best way to think of this is as a gate count where Q is a set of basic gates with
the same fan-in r. Source nodes (circuit inputs) are allowed unlimited fan-out and

can be connected to anything in 7.

Two special cases of C,(f) are of interest Cy(f) is denoted L(f) and called the
formula complexity Co(f) is denoted C(f) and called the combinational complex-
ity of f.

Another complexity measure is the delay complexity Dq(f): this measures the

minimum depth of a chain of gates chosen from ) which implements function f.

Important Results. Let {2 be a complete basis and let f : {0,1}"* — {0,1}™.
Then C,(f) is defined for all integers s > 1 and

Coo(f) £ Cona(f) S C(f) L O (3.1)
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Let © be a complete basis (i.e. all possible functions can be realised by con-
necting gates chosen from () of fan-in r and let f : {0,1}" — {0,1}™. Then there
is a constant [; peculiar to the basis with 1 < I; < 2, such that for s > 2

r-—- ml;

1
- (3.2)

ey < (141 (527)) Culh) +

3 8 —1

Thus C,(f) is of the same order as C(f) for s > 2.

Let f: {0,1}" — {0,1} be a boolean function and let 2 and €} be two complete
bases of fan-in r and 7 respectively. Furthermore, let Cy and D, be two constants
defined by

Cy = max Cé(h),Do = max Dg(h),h € Q

Ca(f) < CoCalf), Dg(f) < DoDa(f) (3.3)

From these results three conclusions can be drawn.

1. Fan-In. The fan-in must be at least 2 (at least two operands are required to
allow computation) but the number of gates required to implement certain

functions will decrease with greater fan-ins.

2. Fan-Out. The fan out must be at least two to ensure the combinational com-
plexity is of the same order as C, (by 3.2), greater fan-outs could decrease

the number of gates required to implement certain functions (by 3.1).

3. Completeness. The basis  must be complete to allow all functions f to
be implemented but if additional functions above those required for com-
pleteness are provided the number of gates required to implement certain

functions may be reduced (by 3.3).

All of these conclusions are moderately obvious but it is good that they can be
formally verified. Increasing any of the quantities of fan-in, fan-out and number of
functions increases the area of the function unit and the tradeoff between number of
function units and function unit complexity is central to the design of configurable

systems.
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3.2.2 Common Approaches.
Three philosophies of function unit design have emerged:

1. Provide All Functions of n variables. This is only sensible for small n (since
2" bits of control store are required to select between the 27" possibilities)
but most cell designs have few inputs anyway so this is not a great problem.
Special regular layouts of units capable of realising all functions of n variables
are possible. Also, because the number of such functions is a power of
two there is no wasted control store. This choice results in cells which are
extremely easy to use: users are never in doubt about whether a particular

function can be implemented.

2. Provide Special Building Functions. It has been noticed that some functions
are much better than others for composing to produce larger functions. In
some sense these functions can be viewed as orthogonal to each other and
work has been done to find suitable sets of functions [Shoup70]. This ap-
proach seems attractive when you count costs in terms of gates but in VLSI
topological considerations are dominant: similarly there is no reason why the
number of orthogonal functions should be a power of 2 so control store might
not be used with maximum efficiency. The system is harder to use in manual
designs because you must remember what functions are available. This tech-
nique is important in structures with limited routing facilities where there
is sometimes no benefit in providing all possible functions (e.g. the cutpoint

array architecture dealt with in section 3.5.3).

3. One Function. In this approach a single ‘good’ function such as NOR or
NAND is provided. This reduces cell size because no store is required to
select cell function. It is also easy to remember what functions are available!
Several cells will be required to implement functions which could be realised

by one more complex cell.

All of these function unit designs are suitable for use with automatic logic-

synthesis algorithms but method 2 is generally predicated on a particular synthesis



Chapter 3. Design of Configurable Systems. 48

algorithm and is not as suitable as the others for hand design. Method 1 offers
the greatest flexibility in algorithm selection at some cost in efficiency if only one

synthesis technique is of interest.

3.2.3 Number of Function Units.

There must be at least one function unit but having several function units could
allow useful multiple output functions such as adders to be implemented within
one cell. Multiple function units within one cell may clash with the basic idea of
cellular systems but it is an important technique because in some cases efficiencies

in implementation can result. There are three main design possibilities.

One Function Unit. This is the obvious choice and results in a clear user model
of the cell. It results in a large array of small cells rather than a small array of

large cells.

Many Identical Function Units. Assuming that all function units are identi-
cal it can be seen that adding an extra function unit will greatly increase the cell
area - not only because of its own size but also because of the extra complication
in the routing system. One reason for having many identical units is that it is
possible to compose them in a cell which could, for example, perform any two

functions of three variables or any single function of four variables.

Many Different Function Units. This probably makes more sense than hav-
ing many identical function units. One could envisage a cell in which there were
four function units each capable of implementing 4 of the possible functions of
two boolean variables. This would require 8 control signals. One cell would often
be able to compute several useful functions simultaneously. The major arguments
against having several different functions are that it increases the perceived com-
plexity of the system to users and that it is unclear whether design techniques

could be devised to take advantage of the additional capability.
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3.2.4 Number Of Inputs.

There must be at least two inputs to allow computation: after this the number
of inputs is influenced by two factors: the routing capabilities and the choice of
implementable functions. With nearest neighbour connections only it is hard to
get more than two or three operands to a given cell so there is little point in having
more than three function block inputs. If it is intended to implement all functions

of the input variables then the control store required increases very quickly.

3.2.5 Implementing Function Units.

Three methods of implementing general functions according to a control store have

been considered.

1. Lookup Table. The idea behind this is that the RAM itself is used as a
lookup table: this method is used in the Xilinx design. If a function has n
inputs then it can be described using a 2" row truth table and implemented
using a 2" bit lookup table. The data inputs drive a selector which chooses

which of the RAM cells provides the output.

The implementation of this method is tricky because it involves selectively
connecting the outputs of a RAM to a capacitive load which is in an unknown
state. There is the inherent potential to accidentally write the RAM cell.
Either great care must be taken with the design or intervening buffers must
be used. Solutions which involve changing the sizes of RAM cell transistors
must take into account normal read and write of the cell from peripheral

logic.

2. Choosing Inputs. This method relies on the fact that a function over {zg,...,Zn-1}
can be implemented using a function with a larger number of inputs {yo, ..., ¥m-1}
and a mapping function which connects y inputs to selected z inputs or
constant inputs (1 and 0) [Preparata71,Chen82]. The original reason for
developing this technique was that the connection function could be imple-

mented using wires in a gate array, however it can also be implemented
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advantageously using multiplexors. This technique has the property that

some functions will be calcula,ted‘fa.ster than others.

3. Obvious Method. The programmable unit can be specified as a logic function

of the control and data inputs and an easily derived truth table. Standard

3.2.6 Sequential Function.

As well as having a combinational logic function most programmable cells have a
sequential function in each cell. There are three possible decisions which will be

investigated here:

1. No Sequential Function. A sequential function is not strictly necessary since
flip-flops could be constructed by wiring up gates in adjacent cells using the
routing function. There are two compelling reasons for including a sequential

function within the basic cell.

(a) Efficiency. Store is so common in digital hardware it is necessary to be
able to implement it cheaply: using multiple cells to implement simple

registers would pose an unacceptable overhead in many systems.

(b) Metastability. Metastability or synchroniser failure is a fundamental
problem in digital systems [Seitz80] and especially in programmable
logic (see, for example Xilinx86],[MMI84]). If a data input and a clock
signal to a latch change almost simultaneously the output can enter a
metastable state in which it is not at a valid logic level. Normally this
state will be left very quickly but in theory it can last indefinitely. This
can cause failure in the system containing the latch. The probability
of entering a metastable state is proportional to the delay in the latch

feedback loop. This is very small if the latch is implemented carefully
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Figure 3—-8: Within Cell Routing.

at the mask level as a cell function but if multiple cells are used rout-
ing delays will increase the loop delay to a level at which the risk of

metastability may be unacceptable in some applications.

2. Simple Latch. A standard small unit such as a D or RS latch is provided
from which larger units can be composed. This has the advantage of keeping
the function unit relatively small. Another important reason for choosing
simple latches is that they only require two or three input variables (D and
Clock or R and S and perhaps Clear). Often, they can be implemented by
simply adding feedback to the combinational logic function.

3. Complex Programmable Flip-Flop. A very general sequential function is
provided which under RAM control can implement any of the usual catalogue
flip-flops (not just latches). This system requires at least four input variables
since large ‘TTL catalogue’ flip-flops have many inputs (J, K, Clear, Preset
and Clock). This adds considerably to the complexity of the function unit
and routing circuitry. It should be noted that more than the minimum
number of RAM cells required to select between the £ combinational and y
sequential functions are likely to be used because of the difficulty of sharing
control store between the two units. On the other hand this technique does

allow any flip-flop to be implemented within one cell.
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3.3 Within Cell Routing.

The within-cell routing function is shown diagrammatically in figure 3-8. Two
kinds of routing can be identified: inter-cell routing which selects outputs to be
passed to the between cell routing and intra-cell routing which selects inputs to

the function unit.

3.3.1 Inter-Cell Routing.

Several important parameters in the design of this routing can be identified.

Flexibility. The design of this circuitry is largely dependent on the choices made
in the design of the between cell routing. In systems with very flexible between cell
routing (e.g. wiring channels) the within cell routing can have a fixed structure.
The design of inter-cell routing is most important in systems with fixed between

cell routing such as nearest neighbour connections.

Number of Inputs and Outputs. The complexity of this function depends
on the number of connections to the between cell routing. The output of the cells

function unit counts as an input to this routing function.

Permutations. Given a set of inputs and outputs one must make choices about
which outputs can be sourced from which inputs. Often some permutations are
not useful: for example in a nearest neighbour scheme connecting an input from
a neighbouring cell back to the same cell. Reducing the number of permutations
supported can obviously reduce the size of the cell but if the resulting routing is
asymmetrical the cell becomes hard to use. Reducing the routing available in a
single cell often has the unwanted side effect of increasing wire length in systems
implemented using the cells. It is worth pointing out in this context that increased

utilisation of cell resources does not necessarily imply increased efficiency: in fact
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limited permutations can cause ‘wandering’ wires which increase utilisation but
decrease real efficiency. For example, a design in which a wire had to travel through
every multiplexor in an array in order to leave on the same cell as it entered would

have very high utilisation but very low efficiency.

Symmetry. In a programmable structure which is to implement many separate
functions symmetry of routing permutations is very important since it allows sub-
designs to be mirrored and rotated to improve the floorplan. In designs which are
to implement a single logic block especially those which use a fixed array structure
for logic synthesis, symmetry is highly undesirable since it results in redundant

routing permutations.

3.3.2 Intra-Cell Routing.

These multiplexors select inputs to the function block from cell inputs (figure 3-8).
We will assume that connections from function block outputs to function block
inputs, (e.g. for feedback in a latch) are internal to the function block. Three
designs will be investigated:

1. Direct Connection to Cell Input. In this case a set of cell inputs are chosen
and the function block inputs connected directly to them. Shoup [Shoup70]
has pointed out that this will usually cause adjacent cells to be wasted rout-
ing inputs to the correct terminal. An important use of this technique is in
cells where the function unit is symmetrical and all cell inputs are connected

to it.

2. Direct Connection to Cell Output. The trick here is that the output multi-
plexors are used to select inputs for the function block: thus function block
inputs can enter the cell from arbitrary directions. The problem is that cell
outputs are being decided by unrelated considerations. It may not be possi-
ble, for example, for a user to have a ‘bus’ wire passing horizontally across a

line of cells because one of the outputs needed to make this wire must select
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another source. This unnecessary coupling between routing and logic design

can be expected to make it harder to write design automation software.

3. Dedicated Multiplexors. This involves having additional multiplexors to
select function block inputs. It makes the cell much easier to use at the

expensive of an increase in circuit complexity.

3.4 Configurable Logic Design.

This section will present the cell design used in the remainder of this thesis based

on the mapping of the design space presented above.

3.4.1 Bet-ween Cell Communication.

It was decided that the inter-cell communication should be fixed and all selec-
tion should happen in the basic cell itself. This allows the whole programmable
structure to be built from a single rectangular repeating unit which makes for a
very efficient layout. A nearest neighbour wiring scheme was chosen as the basic
communication structure allowing extreme simplicity and regularity. Three addi-
tional global signals are routed to every cell: two inputs Gy and G, and an output
FTEST. The two inputs are intended to be used as clock signals in user designs
because clocks are one area where delays through nearest neighbour connections
could be a serious problem. This has the important side effects of freeing the user
from deciding a strategy for clock distribution and freeing many multiplexors for
data signals. The global output signal FTEST is used to allow the value of any
function unit to be examined without upsetting the routing multiplexors: it is

intended mainly as a debugging aid.

3.4.2 Within-Cell Communication.

Minimisation of cells needed for routing could be achieved by having the maxi-

mum routiﬁg complexity i.e. a crossbar switch with 6 outputs (N,S,E,W, 2 function
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Figure 3-9: Cell Routing.

block inputs (X; and X)) and 7 inputs (N,S,E,W,G;,G; and function block out-
put). Some permutations, for example, routing North input to North output are
not useful since the cell to the North will already have the signal available or be
receiving an undefined value (if it has connected South output to South input)
so these possibilities are removed. Similarly, there is no need to be able to select
the global signals as cell outputs. Removing redundant permutations results in
functions which can be realised with 4:1 multiplexors. Four is a ‘magic’ number
here since it is a power of two which means that we get maximum utilisation of

control store in such multiplexors.

The routing structure within the cell is shown as figure 3-9. This switching
function can be realised by five 4:1 and one 6:1 multiplexor controlled by 13 bits
of RAM. Since G, and G, are intended as clock signals they are only available on
one of the function block inputs: this is one of the few cases of asymmetry in the

Configurable Logic design.

3.4.3 Function.

There must be at least two inputs and at most six (because the cell itself has
only four nearest neighbour and two global inputs). We choose to implement

all functions of the input variables to simplify the user interface and minimise
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the number of cells required to implement any given function. This means that
the number of RAM cells required to control the function unit doubles for every
additional input variable: it is unlikely that function units with more than four
input variables would be useful even if the cell itself had more than four inputs.

The advantages and disadvantages of each choice are outlined below.

1. Two Variables. There are sixteen possible functions of two variables so
the cell needs only four bits of RAM to control the function unit. This is
consistent with relatively small cells. Several cells will be needed to build
larger functions but there are many algorithms for logic synthesis with two
input general cells (Chapter 6) and obvious array structures for logic blocks
using them. Since there are four inputs to the cell either two must be chosen
arbitrarily as function unit inputs (possibly resulting in additional routing
and making the cell asymmetrical) or additional routing multiplexors must

be provided.

2. Three Variables. There are 256 possible functions of three variables so the
cell would require 8 bits of RAM to control the function unit. This still
allows reasonably small cells. Many common functions such as three input
XOR (used to calculate sum in full adders) can now be implemented within
one cell. Three input variable function units have been used in previous de-
signs e.g. the connection machine ALU [Hillis85]. As with two input designs
either the cell must be made asymmetrical or additional input-selection mul-
tiplexors must be provided. The major disadvantage relative to two-input
designs is that getting three inputs into a cell for computation means that
they must come from three different directions. It would be hard to find an
array layout for logic blocks which got around this problem using only near-
est neighbour connections. Given the difficulty of routing three inputs to a
cell for computation it is worth considering providing more than one such
function unit to allow, for example, both sum and carry to be implemented

within the same cell.
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Figure 3—-10: CAL Function Block Design.

3. Four Variables. There are 65536 possible functions of four variables so the
function unit requires 16 bits of control RAM. This forces us to have large
cells. No additional multiplexors are necessary but the problem of routing
four inputs to a given cell to get the benefit of its function unit will usually

involve wasting many adjacent cells.

to
Design Decisions. It was decided . - use a two input function block since this
allowed us to have a very symmetrical but still small basic cell which could make
use of previously developed logic synthesis algorithms. The decision to have a two

input function unit ruled out the provision of complex flip-flops but it was felt

essential to provide at least a simple latch within the basic cell.

A block diagram of the function unit within each cell is given as Figure 3-
10. It relies on the fact that all functions of two variables (X1 and X2) can be
computed by a 2:1 multiplexor (marked F in the diagram) which selects Y2 if Y1=1
and Y3 if Y1=0 given the inputs shown in Table 3-1 [Chen82]. This technique
was chosen because it allows the function unit to be implemented using the same
multiplexor designs used in the routing section. This simplifies the VLSI layout
and allows us to concentrate on very efficient layout of a single multiplexor and

RAM combination leaf-cell.
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Number. | Function Y1 Y2 Y8

0 ZERO zl 0 0

1 ONE zl 1 1

2 X1 zl 1 0

3 X1 zl 0 1

4 X2 zl z2 z2

) X2 xl z2 z2

6 X1-X2 zl z2 0

7 X1-X2 zl z2 0

8 X1-X2 zl 0 z2

9 X1-X2 zl 0 z2

10 X1+ X2 zl 1 z2

11 X1+X2 zl 1 z2

12 X1+ X2 zl z2 1

13 XT1+X2 zl z2 1

14 X1lo X2 zl z2 z2

15 X1 X2 zl z2 z2

16 D Latch z1=Clk | 22=D | Func. Out
17 D Latch z1=Clk | z2=D | Func. Out
18 DClk Latch | z1=Clk | 22=D | Func. Out
19 D Clk Latch | z1=Clk | 2=D | Func. Out

Table 3—1: CAL Programming Table.
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3.4.4 Improvements.

The present design of configurable logic cell is ‘minimalist’ in as much as no features
have been added if their was any doubt as to their utility, even when there was
a possibility to implement them using otherwise unused resources. There are
two reasons for this: firstly, every additional feature complicates the design and
reduces the chances of success on first silicon and secondly, it was felt that it
would be better to get some experience with the minimal design before adding
extra features. The second point is reinforced by the fact that it would be hard
to remove features from the architecture later when user designs could be relying
on them. In this section we will consider some possible ‘bells-and-whistles’ which
could be added to the current design, most of these are possible uses for the X1

and Y3 multiplexor permutations not used by the current design.

Global Signals. One area in which the present design may have inadequate
provision is in global wiring to allow low-skew distribution of critical control sig-
nals. It would be trivial to add another two global inputs using unused inputs
on the X1 multiplexor, however, it would probably be better to add row and col-
umn array crossing signals to the architecture. To get full benefit from these they
should be implemented as wired logic and be able to be driven by cell outputs or
pad inputs. This would require two extra RAM cells and some moderately large

buffering circuits in each cell.

Extra Functions. Another way of extending the cell would be to use the two
extra Y3 multiplexor inputs. These could be connected to global signals or cell
inputs. This would allow a few functions of three variables such as the 2:1 multi-
plexor to be implemented but the function units would no longer be symmetrical
with respect to cell inputs i.e. some functions could only be performed using spe-
cific cell inputs. Provision of multiplexors would allow efficient implementation of

switching structures within user designs.

Another possible extension would be to add two more RAM cells to the basic

design to increase the number of functions implementable (the floorplan of the
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VLSI implementation favours adding RAM cells in pairs). Adding extra sequen-
tial functions such as RS latches or master-slave registers is especially attractive
because of the electrical problems associated with multiple cell implementations

of these functions.

Application Support. As we discussed in the introduction several important
applications for configurable logic are envisioned. Some of these can benefit from
extra hardware within the basic cell. For example the current FTEST circuitry
which allows one function block output to be monitored in real time is very suitable
for EPLD applications but in an application where the configurable logic control
store was memory mapped on a host computer it would make more sense to
make function block outputs available by reading locations in RAM. This facility
is extremely easy to implement and is provided in the Xilinx LCA architecture.
Another possibility would be to extend the architecture by allowing inputs to the
cell array to be provided by writing RAM locations on the chip. This is already
possible to a limited extent by programming the function units to implement the

constant functions 1 or 0.

3.5 Comparison with Previous Designs.

In this section we will compare the configurable logic cell design with some of the
most significant previous designs. We can divide these designs into two classes:
simple array structures intended for implementing single logic blocks and more
general structures. We will move in approximate order of generality. Firstly we
deal with two-level AND-OR type designs: these account for most of the present
market for EPLD’s {Byte87]. Secondly, we will deal with the cutpoint array: this
is very similar to the two level designs except that it uses more general logic
gates in the AND plane. Thirdly, Shoup’s cell design is important because it was
the first reasonable attempt at a higher generality cell - previous designs such as

the Wahlstrom array [Shoup70,Wahlstrom67] are grossly inefficient. Finally, the
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Figure 3-11: PLA Derivatives.

Xilinx system is of interest because it is a commercially available programmable

system using up to date technology.

3.5.1 Two Level Designs.

These are what most people think of as programmable logic or EPLD’s. Good
introductions to design with these parts are given in [MMI84] and [Byte87]. Two
level logic is basically simple but has become confusing as company marketing
departments invent new acronyms almost every day to persuade customers their
products are best. Three classes of programmable two-level logic can be identified
(figure 3-11). It is worth pointing out that these designs rely on the use of wired
logic for their efficiency: wired logic can be implemented more efficiently in fuse

based designs than RAM based designs.

Programmable Read Only Memory (PROM). This is a straightforward
derivative of ROM - all minterms are decoded and a programmable OR plane
selects which ones to use in each output function. This architecture is general and
suitable for irregular functions (such as control stores). It is an ‘all functions of n
variables architecture’ and so cannot be used for functions with large numbers of

inputs.
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Field Programmable Logic Array (FPLA). This architecture is a develop-
ment of the PLA: it has a programmable AND plane and a programmable OR

has to be guessed a priori; as we have seen it is hard to make good guesses for
general functions. In the EPLD marketplace this leads to providing a catalogue
of chips with different numbers of inputs, outputs and product terms. The FPLA

architecture is the most flexible of the two-level designs and is best suitable for

Programmable Array Logic (PAL). This architecture was designed by Mono-
lithic Memories [MMI84] and is composed of a fixed OR plane and a programmable
AND plane. The product terms are partitioned into groups, one group for each
output variable. Each output is then an OR over a small number of user selectable
minterms. This implies that minterm sharing between outputs is no longer pos-
sible. This architecture is slightly faster than the FPLA because only one plane
is being programmed: this factor is critical in common PAL applications such as
memory address decoding. It is a good design for the kind of small functions
found as glue logic on printed circuit boards but is totally unsuited for high gen-
erality systems. The lack of generality of the architecture is addressed to some
extent by providing a catalogue of chips each with different array dimensions and
peripheral logic. As well as the bipolar fuse-based PAL devices CMOS EPROM
based PAL’s are available from Altera [Altera87]. The increased density of CMOS
allows much larger numbers of product terms and output groups (or ‘macrocells’)
and flexible I/O units. The Altera CAD system takes advantage of a library of
macrocell encodings for standard TTL functions to allow automatic conversion of

TTL designs.

Extensions. Four important extensions are often applied to the basic PAL and

FPLA designs to increase their utility.

1. Feedback. Implementations of many of the designs above include registers on

the array outputs which are fed back to array inputs to allow implementation
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of state machines. Use of complex registers such as J-K flip flops rather than
simple latches can reduce the number of product terms required [Sobol83].
Any a priori division of array inputs and outputs between feedback terms and
off-chip inputs and outputs will have adverse consequences on the expected
utilisation of the programmable array: this can be offset by providing a

catalogue of devices.

2. Decoders. Normally adjacent columns of the AND plane are fed with an
input variable and its complement but it is possible to use other functions of
the input variables. One important technique is to group two input variables
z,; and z, and instead of using z,,Z7, z,, 77 to drive the array use the decoded
functions z1z2, T122, £1Z3, T1242- Lhis technique can often reduce the number
of product terms required. Larger decoders of three or more variables can
also be used but this increases the number of columns in the AND plane
and can increase the size of the PLA [Fleisher75]. In a programmable struc-
ture the need to make a prior decisions about the number of decoders and
variable grouping decreases the utility of this technique; there is also some
additional delay caused by the extra level of logic. None of the common

programmable parts provide decoders.

3. Programmable Invert. Sometimes the complement of a function can be im-
plemented with fewer product terms than the function itself (either because
fewer product terms are required to cover the minterms or because better
sharing with other functions is possible). FPLA chips, therefore, often pro-
vide programmable invertors (using XOR gates) on OR plane outputs to

allow the logic matrix to implement the complement of the desired function.

4. Programmable I/O Blocks. It is very common to reduce pad costs by pro-
viding complex programmable I/O blocks which allow pads to be used as
inputs, outputs or Tri-State common inputs and outputs. Often additional
programmable latches or flip-flops are included in these blocks to synchronise

signeﬂs entering and leaving the chip with a system clock.
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Timing. It is important to consider the timing properties of two-level designs
in some detail especially since the FPLA and PAL designs are often used as asyn-
chronous parts in TTL-type systems with edge triggered clocks. The timing com-
plexity of these systems can undermine the reduction in design times expected

from this approach. There are three types of timing problems.

1. Synchroniser Failure. This occurs when a clock signal and a data signal to a
latch change at almost the same time forcing the output into a metastable

state for an indefinite (but normally very short) period.

2. Logic Hazards. There are two classes of logic hazard (or ‘glitch’): static and
dynamic. In a static hazard an input variable change which should have no
effect on the output causes a temporary change in the output which then
returns to its correct value. In a dynamic hazard an input change causes
several transitions on an output before it reaches its correct new state. These
hazards can be caused by ‘changing products’ in the AND plane (e.g. in a
static hazard when z = 0 then y = 1 because of product term 10 but
when z = 1 then y = 1 because of product term 15, so when z changes y
may well go to 0 for a short period) often they can be eliminated by using
large overlapping minterms rather than small disjoint minterms in the logic
synthesis. This, of course, complicates the task of the logic designer or the

author of the logic synthesis program.

3. Function Hazards. A function hazard occurs because of changes in input
variables. Suppose in the design of a state machine two input variables a
and b are supposed to go low simultaneously as a result of a state transition.
In a physical implementation there may be a slight delay between the two
transitions (perhaps because of differences in the length of the feedback

wires) resulting in temporary spurious output values.

Use of timing methodologies which would normally be frowned upon is prevalent

in PLD designs because of the predictability of the delay through the logic matrix
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and the need to ‘shoehorn’ designs into a standard size chip. From the point of

view of timing three classes of design can be identified.

1. Combinational. In this class of design no state is provided on chip. The user
must still be aware of timing hazards if the design’s outputs are to be used

as clock signals for external circuits.

2. Registered Outputs. In this case D type edge triggered flip-flops or latches
are placed on array outputs and clocked by an external signal. If off-chip in-
put signals are also latched then this design can be safe from timing hazards.

PROM’s nearly always use registered outputs since the ‘single minterm’ cov-

ering of output functions means that logic hazards are unavoidable

3. Generated Clocks. In this case clocks or R and S signals for latches can
be taken from matrix outputs. This provides extra flexibility for the logic
designer but places additional responsibility on him. Logic and function
hazards are both very important since ‘glitches’ in output signals will cause
these registers to take spurious values. If a data and a clock signal are
taken from adjacent product terms it is not unlikely that they will make a

transition almost simultaneously so the synchroniser failure problem must

also be considered.

3.5.2 Generalised PLA Architectures.

In this section we will cover some of the attempts which have been made to gen-
eralise the basic two level architecture to compete with gate array class systems:
all of the methods discussed below were developed for mask-programmed designs

but could be adapted for dynamically configurable systems.

IBM High Density PLA. The IBM programmable logic chip [Wood79] at-
tempts to increase the generality of the PLA architecture by incorporating a large
amount of programmable circuitry on the periphery of the chip while still keeping

the array itself relatively inflexible. This architecture is particularly notable for
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the number of patents associated with it. The floorplan is shown in figure 3~12

and offers the following additional capabilities.

1. Two AND Planes. Instead of having a single AND plane there are two:
one above and one below the OR plane. This is an attempt to solve the
problems of implementing more than one function in a single array without
the area overhead of having interleaved AND and OR columns. Obviously it
is less flexible than the fully interleaved approach but can be more efficient

in particular cases.

2. Segmentation. Both the AND and the OR planes can be segmented at any
point on a column. Coupled with allowing inputs and outputs to enter and
leave from either side of the array this allows for greatly increased utilisation.
The utilisation can be further increased using the programmable interconnect
between the AND and OR planes which allows several small functions to be
joined together to produce one larger function before being fed into the OR
plane. This means that product terms can be built up from two inputs
which enter on the same column - one at the top and one at the bottom -
thus inputs can share a column if they have only a small number of product

terms in common.

3. Input Decoders. There is a complex programmable interconnect scheme at
the array periphery to allow inputs to be paired together before being fed to
decoders at the array edges. All array inputs are paired and decoded in this

manner.

4. Programmable Latches. All output variables are fed through complex pro-
grammable latches. These latches allow for programmable inversion of the
output variable. Three functions are available J K Master/Slave flip flop,
gated latch and AND /polarity hold function. All these latches use two out-
put columns in the PLA, in the first case these are connected to the J and
K inputs, in the second case output is used as a clock for a D latch on the
second input and in the third case the two outputs are AND’ed together
before being passed to a latch controlled by the system clock.
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The idea behind using two input flip-flops is that the they ‘remember’ their
current state until explicitly told by a PLA output to update it - state ma-
chine designs which use simi)le D latches require the PLA matrix to update
the state vector every clock cycle. This technique is claimed [Sobol83] to
make the PLA encoding easier to follow and to reduce PLA real estate by
decreasing the number of product terms: it must be remembered that it does

require twice as many output terms so the overall area will not necessarily

be reduced.

5. Programmable Interconnect. A complex programmable bussing scheme is
provided between the edge of the array and the pad ring to allow chip inputs
and outputs and PLA feedback terms to be connected in fairly arbitrary

patterns to PLA inputs and outputs.

6. Programmable I/O. Special programmable I/O drivers are provided allowing
each pad to be used as an input, output or Tri-State input/output.

Hewlett Packard Universal Synchronous Machine (USM). The HP pro-
grammable logic chip architecture [Sobol83] is shown in figure 3-13. It offers the
following additional capabilities over the PLA.

1. Segmentable AND and OR plane. The design interleaves inputs and outputs
(row folding) to allow multiple functions to be implemented efficiently within
a single array. Inputs and outputs can enter and leave from the top and the
bottom (column folding). Rows and columns of the array can be segmented
only at predetermined points. Without segmentation 112 product terms are

available; using all 8 row breakpoints 896 are available.

2. Complex Flip-Flops. PLA outputs are latched using complex flip-flops which
can implement one of 15 different truth tables, additionally an XOR gate is
provided to allow programmable inversion of flip-flop inputs. Like the IBM
design each flip-flop is controlled by two PLA output columns.
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Figure 3—-12: The IBM High Density PLA.
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Figure 3—-13: The H.P. Universal Synchronous Machine.

3. CAD Support. One of the major claims made for the USM architecture is
the ease of mapping state machine designs onto it. To support this applica-
tion special CAD programs were developed: designers edit the PLA matrix
directly rather than specifying logic equations. Presumably this allows much
better utilisation of chip resources where multiple functions are implemented

within a single segmented array.

Storage Logic Array (SLA). The SLA programmable logic architecture [Patil79]
is the most general of the attempts to improve PLA’s and takes many of the ideas
in the other designs to their logical conclusion. The basic architecture is shown in
figure 3-14. Segmentation of both rows and columns is allowed on specified block
boundaries - the original paper suggests row segmentation points every 4 columns
and column segmentation points every 8 rows. Every few (the paper suggests 2)

column segmentation points a latch is provided inside the array. These are RS
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latches and require two array output lines to drive them (rather than the conven-
tional D latches clocked by a system clock found at the edge of PLA’s). There
are breakpoints within the latch design allowing the gates to be used as buffers,
invertors or NAND gates instead of the normal latch function. There are obwi-
ous potential timing hazards associated with these latches when used as feedback
terms since there is no synchronisation to a system clock: [Patil79] claims that
because the variance of the delay through two columns is much less than the delay
through the fastest column (because the loading and transistor parameters are
well matched) race conditions should not occur. A given row or column may be
segmented many times (with IBM and HP designs there is no reason to segment
columns more than once because there are only two possible input signals). Rows
and columns are fully interleaved and signals can enter and leave from the top or
bottom of the array. On the diagram ‘X’ represents a programmable column break
point and ‘X’ a row breakpoint. The normal PLA OR-plane possibilities are avail-
able where rows cross latch inputs and the normal PLA AND-plane possibilities

where they cross latch outputs.

The multiply segmented architecture and the embedded storage elements allow
logic blocks to be embedded in the centre of the array receiving inputs and outputs
from other adjacent logic blocks: this is a major increase in generality over the
previous designs. Design using SLA’s is much more like normal VLSI design with

floorplanning becoming an important consideration.

3.5.3 Minnick’s Cutpoint Cell.

This design is in the same generality range as the FPLA: like it arrays of these cells
were intended to implement single logic blocks. This cell has fixed between cell
and fixed within cell communication. The cell schema is shown in figure 3-15: it
can implement any of the functions shown in table 3-2. The cell was not intended
to be programmed dynamically but by blowing fuses or cutpoints. However, a
dynamically programmed version could easily be designed. This array is intended

to synthesise a single logic function of n input variables and it performs its task
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Figure 3-14: The Storage/Logic Array.

very well. It is potentially more efficient than a PLA because the more general
gates allow larger functions to be generated in a single product row. Speed will be
much lower, however, because signals must propagate through many simple gates

rather than through two levels of wired logic.

Obviously, the design can be generalised to multiple output functions with
product sharing in the same way as PLA’s. If this is done an interesting situation
arises: the ability to synthesise larger functions in the ‘AND’ plane becomes less
useful because it is less likely that a larger function will be usable by several of the
output signals. However, if we also use more general gates in the ‘OR’ plane the
number of product terms can be significantly reduced. This situation is considered

in more detail in Chapter 6.

3.5.4 Shoup’s Control Array Cell.

Figures 3-16, 3-17 and 3-18 show the design of Shoup’s cell: arrays of these cells

were intended as a replacement for microprogrammed control store. We shall
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consider this cell in some detail: before we begin it is worth mentioning that
Shoup considered cell control store to be built up from shift registers constructed
using logic gates and multiplexors to be constructed using logic gates. Control
store/multiplexor combinations were ‘big boxes’ on Shoup’s diagrams but using
the VLSI implementation developed in the next chapter we can consider them to
be fairly small ones. This has a strong influence on the tradeoff between flexibility

and utilisation in the cell design. Shoup’s cell requires 15 control bits.

Inter-Cell Communication. This cell has input and output connections to
the four nearest neighbours on a grid. It also has array crossing busses, unusually
these run diagonally at 45° to the grid connections along both SW-NE and NW-SE
diagonals, one set are inputs and the other set are outputs. This scheme makes
every global signal available at one cell in each row and column, after this routing

can be done using neighbour connections.

Intra-Cell Communication. The routing function within the cell is rather
unusual as well: regularity and symmetry are sacrificed to get maximum utilisation
of multiplexors. Four to one multiplexors are used: as we have seen this is an
ideal size for routing multiplexors. Signals from north or south can pass through
or turn left or right. Signals from east and west can only go straight through or
turn right. Shoup claims that this reduced switching function still allows flexible
communication between cells: within a single logic block he may be correct but the
lack of symmetry means that sub-designs cannot be rotated to aid floorplanning

in larger systems.

Function Unit Input Selection. Shoup again attempts to cut down on the
number of multiplexors required by using the outputs of the routing multiplexors
as sources for a 4 input function block. Not every input to the function block need
be significant. Since most cells will not require all four routing multiplexors spare
ones can be used to select function block inputs: this will significantly increase

multiplexor utilisation. There is one important problem with this approach: it
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confuses the allocation of two logically distinct resources. Decisions about which
functions a cell performs must now take account of routing decisions and vice-

versa. The permutations allowed are fairly restrictive.

Function Unit Design. Shoup’s cell and the Configurable Logic design both
have a single bit of state but the way it is used is totally different. In Shoup’s
case the state is used to store the previous value of the function block output and
the whole system is synchronised to a single global clock. This allows efficient
realisation of the automata used in the control stores this cell was intended to
implement. The routing multiplexors are further overloaded by the need to deal

with two function output signals.

The combinational functions provided are also radically different from those
in the configurable logic design. Firstly, one should note that there is a hidden
routing cost in the function unit. Most cells will not want four input AND gates
with preset terms inverted (even with a bus input signal it is hard to arrange
to route four inputs to the cell) so additional control store is provided to mask
out any input: 4 bits are required. This is exactly the amount of control store
necessary to provide two 4:1 multiplexors to select function block inputs. Instead
of being able to compute any logic function of any two inputs we can compute a
specific logic function of up to four inputs and four control bits are saved. The

tradeoff is certainly interesting but not as advantageous as it at first appears.

Array Crossing Busses. The output bus in Shoup’s cell is a wired AND of
all the cell outputs, it is chosen by an additional multiplexor over the neighbour
routing outputs. This is another tradeoff of flexibility against multiplexor size:
placing the output bus selector there means that a neighbour routing multiplexor
will be used up to decide the output bus function. This further constrains the
selection of neighbour outputs and cell inputs. The fact that only two neighbour
multiplexors can be chosen makes things worse: it would seem to be much better .
to use a 4:1 multiplexor and select directly from two cell inputs and the sequential

and combinational output functions.
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Figure 3-16: Block Diagram of Shoup’s Cell.
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Figure 3—17: Routing Section Design of Shoup’s Cell.

Diagramming. It is interesting to note that the usage of multiplexors in Shoup’s
cell is so convoluted that he does not attempt to diagram the actual paths being
implemented within example designs. Instead the numeric values stored in the
routing multiplexors are given! The ability to draw easily comprehended diagrams
of cell usage in implemented systems is crucial to allow manual design using the
system. The situation is made worse by the fact that no algorithm for automatic

logic synthesis is provided.
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Figure 3-18: Function Unit Design of Shoup’s Cell.

3.5.5 The Xilinx Programmable Gate Array.

This is an ambitious system aimed at the EPLD market. It is not clear whether it
is intended to be a general system in the sense defined in Chapter 2 but its imple-
mentation favours its use to implement subsystems rather than systems. Because
of the commercial nature of this design its internal structure has not been made
totally public. The documentation concentrates on design using the CAD tools
supplied by Xilinx and does not give a complete description of exactly what con-
figuration possibilities exist. The diagrams below are based on those in [Xilinx86)
but some changes have been made for clarity; in particular the diagram of the

function unit is a merged version of two diagrams in the Xilinx documentation.

Inter Cell Communication. The Xilinx system is notable for having flexible
between cell routing and fixed within cell routing. The aim is to emulate the
gates-and-wiring-channels structure used in gate arrays. The layout is shown in
figure 3-19: note that this does not give the whole story; additional switches are

required to connect function block inputs and outputs to the wiring areas.

The wires on the Xilinx chip have their direction fixed by the control store
and require the special buffering shown in figure 3-7. Instead of providing these
buffers on the edge of each switch matrix the chip is divided up into 9 sections

(on a 3x3 grid) and the buffers are placed on section boundaries. This means that
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Figure 3-19: Routing Structure of Xilinx Array.

long signal paths within a single section can have insufficient buffering: such paths
are flagged by the design automation system. Although this saves control store
it reduces the number of routing permutations (since legal switch settings may

correspond to under-buffered paths) and makes the routing problem even harder.

The design of the switch blocks is shown in figure 3-20 and table 3-3 shows the
implemented connections. The implementation of the subunits is not explained in
the Xilinx literature but it is a safe guess that a multiplexor like solution has been
adopted because there is no mention of one connection through a subunit prevent-
ing another (blocking). This subdivided structure requires less control store than
a general switch and supplies many fewer routing possibilities. Bringing signals
to a switch matrix does not guarantee that they can be connected, either because
there is no path through the switch or because of blocking in internal segments
between the subunits. Some paths involve passing through multiple subunits pre-
sumably incurring greater delay. The Xilinx documentation suggests that each
connection within a subunit involves passing through only a single transistor; this
minimises switch resistance but normally involves the use of one RAM cell per

switch (Chapter 4). The pass transistors in the switching units are described as
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‘special’; presumably processing techniques have been used to reduce Vr and hence
the degradation of logic 1’s so that fewer buffers are required. This should result

in a useful decrease in propagation delay.

Taking account of the fact that the switch which allows X — Y also allows

Y — X 45 RAM cells would be required to implement each matrix.

Within Cell Communication. Here we will consider the selection of sources
for the Configurable Logic Block (CLB) inputs. There are three categories of input

signal.

1. General Purpose Interconnect. CLB inputs and outputs can be connected
to ‘adjacent’ segments of general interconnect. It is unclear whether every
signal can be connected to every adjacent line but we will assume that this

is the case.

2. Long Lines. There are four long lines adjacent to each cell.

(a) Global Long Line. This line is powered by a special buffer and is in-
tended to provide a low skew clock to the whole array. It runs vertically
along each column of the array and can be connected to the B or K

.‘ inputs of any CLB.
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Terminal | Possible Connections | Possible Connections
Large Switch (S1) Small Switch (S2)

1 3,5,6,7,8 2,34

2 3,4,5,6,8 1,34

3 1,2,5,7,8 1,2

4 2,5,6,7,8 1,2

5 1,2,3,4,7 *

6 1,24,7,8 *

7 1,3,4,5,6 *

8 1,2,34,6 *

Table 3-3: Switch Matrix Connections.

(b) Vertical Long Lines. There are two vertical long lines in each column.
They can be driven either by a CLB output or an IOB (I/O Block)
output. One of these lines can also be driven by a second global signal
on a column by column basis and can be connected to the B, C or K
inputs of column CLB’s. It is not made clear what the potential sources

and sinks of the second long line are.

(c) Horizontal Long Line. The documentation does not explicitly state the
possible sources and sinks for the horizontal long line. Examination of
example diagrams suggests it can be sourced from IOB’s on either side

of the array and connected to A and D inputs of adjacent cells.

3. Direct Interconnect. In this case connections from cell outputs to adjacent
cell inputs are made without passing through the switch matrices. These
are intended for high speed local connections. Each CLB’s X output may
be connected to the C or D inputs of the CLB above or the A and B inputs
of the CLB below it. Each CLB’s Y output may be connected to the B

input of the block on its right. Thus direct interconnect cannot be used to
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route signals right to left through the array and there are restrictions on
the sequential functions which can be performed using direct interconnect

sources (e.g. you cannot use direct interconnect to provide a clock signal for

the cell below).

Function Unit Design. The Xilinx function unit is the most complex of those
seen to date. The multiplexors are built from trees of 2:1 multiplexors. The combi-

national section is shown in figure 3-22 it is composed of three main components.

1. Input Selectors. There are two input selection networks capable of selecting
any three variables from the five inputs (there are (3) = 10 possibilities so 4

bits of RAM are required in each network).

2. Lookup Tables. There are two function units capable of implementing any

function of three variables based on a 8 bit RAM lookup table.

3. Combining Functions. On the output of the two function generators is a
single multiplexor controlled by the B input which can extend them to im-
plement any function of four variables. This technique relies on Shannon’s
decomposition f(z,z1,22,23) = zof(1,z1,22,23) + Tof(0, 1,21, z3), One
function unit can implement g(zy,z2,z3) = f(1,z1,22,z3) and the other
h(zy,z4,23) = f(0,z,,z2,2z3) and the multiplexor controlled by z, imple-
ments f = zog + Toh. A single extra RAM cell is required to decide between
implementing a single function of 4 variables or two functions of 3 variables.
By selecting a different set of three input variables in one function unit from

the other a small number of 5 input functions can also be implemented.

The combinational logic requires a total of 25 RAM cells to control it. Large flip-
flops can also be implemented using a single cell. The extra programmability in
the CLB uses 6 3:1 multiplexors requiring an extra 12 bits of RAM for a total of 37

bits (this assumes the use of the most efficient ‘tree’ multiplexor design (Chapter

4)).
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Figure 3—21: Functional Diagram of Xilinx Cell.

Input/Output Blocks. At the edges of the array of cells are special purpose
Input/Output Blocks (IOB’s), in the XC2064 there are 16 along the top and
bottom edges and 13 along the left and right edges. A diagram of the Xilinx I/O
block is given as figure 3-23. Each block can be configured for a wide variety
of functions: as well as the obvious bidirectional tri-state and normal input and
output pads open-collector pads can be produced by using the same signal to
control T'S and OUT. A global control function allows selection of TTL or CMOS
input levels for all pads. Xilinx application notes gives examples where IOB’s
are used as Schmitt-triggers, oscillators, registers and shift-register counters. The
latter applications are presumably important since otherwise a whole CLB would
be required to implement each very simple one bit register. Using I/O blocks is

not a complete solution and it makes resource allocation decisions even harder.

Control Store. The striking thing about the Xilinx design is just how many
RAM cells are needed to control a relatively small array. The XC2064 chip has
64 cells and 58 programmable I/O blocks. The 8x8 array of cells is implanted in
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a 9x9 array of switching units. It requires 12038 bits of control, 290 of these are
used in the I/O blocks leaving 11748 for the cells and switching structure. As a
comparison a 16x16 CAL chip requires 5120 bits.

Diagramming. Designs done using the Xilinx array are presented in a format
similar to printed circuit board layouts. Each block in the array is given a user
specified label and the wiring structure between them is diagrammed by draw-
ing the logical connections within the wiring channel area using standard circuit
schematic conventions for crossing and connecting wires. Schematic editor like
tools are provided for manipulating the designs based on this representation and

an automatic router (presumably a maze router) is also available.

Development. Recently, preliminary data sheets for a new family of LCA’s the
3000 series have been issued. The basic architecture remains unchanged but the

following notable improvements have been made.

1. 5 Variable CLB’s. CLB’s can now compute any function of 5 variables or two
functions of 4. Slightly more complex sequential resources are also provided.
Naturally doubling the number of variables doubles the size of the lookup
table.

2. Extra Routing Resources. As well as the resources described above array

crossing Tri-State lines are provided.

3. Circuit Improvements. The I/O blocks now have additional configuration
bits to specify electrical properties like slew rate. The configuration pro-
gram loading unit has been improved and memory cells can now be cleared
automatically on power on. A large number of other minor improvements

have been made to programming and I/O capabilities.

4. Array Sizes. The largest LCA now has 320, 5 variable CLB’s. This requires

64160 bits of configuration information. Since 5 transistor RAM cells are
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used and RAM probably accounts for only about half of the silicon area the

mask for this chip must be quite large even with good processing technology.

Overview, The basic idea behind this design is that most common medium
sized logic functions should be implementable using one cell. The consequence
of this decision is that design using these cells is best done manually so that the
system is defined in terms of implementable units. There is a high ‘variance’ in
the efficiency with which different functions can be implemented: for example a
seven segment decoder can be implemented using just seven cells (specifying each
output as a function of 4 input variables) with extremely high efficiency but a 32
bit latch would require 32 cells and make very little use of the resources provided.
The philosophical question is whether high efficiency for restricted problem spaces
given a large amount of human effort is more important than ease of design of

general systems.

3.5.6 The Actel ACT Series.

Very recently, a new family of programmable gate array devices has been an-
nounced [Mohsen88]. These devices are based on a novel ‘antifuse’ technology
(antifuse because ‘blowing’ the fuse switches it ON) antifuses provide low on-
resistance in a very compact switching element, [Mohsen88] claims that the an-
tifuse is about the same size as a via (via’s are about 6um on a side in 2um
technology). Naturally, addressing overheads must be added to this but the size
will still be very much less than that of the equivalent structure in a RAM and
transistor architecture. The Actel antifuse is an important development since pre-
vious attempts at such devices capability have required exotic processing or have
been unreliable in use. The low 1kQ on resistance of the antifuse coupled with its
small size allows conventional gate-array architectures to be used: the ACT1020
is implemented in 2um CMOS, contains 186,000 antifuses and provides roughly
2000 equivalent gates. Larger 6000 gate equivalent devices in 1.5um CMOS are
also available. The wiring channels in the Actel gate arrays have 25 tracks (com-

pare this with the 5 tracks of the Xilinx architecture): these wide wiring channels
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allow most of the logic cells to be used in user designs. Speed and density (gate-
count) figures for the Actel device are claimed to be comparable with small mask

programmed gate arrays.

The Actel products can be expected to revolutionise the EPLD marketplace
where write-once non-volatile systems are preferred: they do not, however, directly
compete with the Xilinx or Configurable Logic systems in applications where it is

necessary to reprogram the device many times.

3.6 Summary.

We have considered the design of the basic cell in a cellular array architecture
and proposed a design which seems to be suitable for our purposes. This design
has been compared with some of the most successful previous designs. The per-
ceived advantages of the configurable logic design are its generality, symmetry and
simplicity. This allows reasonably efficient implementation of a wide range of ar-
chitectures. In the remainder of this thesis we will limit ourselves to considering

the VLSI implementation and range of application of this design.



Chapter 4

VLSI Implementation.

This chapter will explore the implementation of CAL in VLSI. We will assume
the use of a 2um n-well CMOS process with two metal layers and one polysilicon
layer: this is a typical process for ASIC designs. For an introduction to CMOS
design see [Weste85,Glasser85]. General points common to all implementations

will be investigated and several designs of key components compared.

4.1 Implementation of Control Store.

Obviously any implementation of a reconfigurable architecture must provide for a
control store. One interesting point is that in PLD applications users often view
the ability to read the control store as a positive disadvantage because it can reveal
the design of their system to competitors: however, write only control memory has
serious testability problems. VLSI structures for implementing control stores can

be divided into four categories:-

1. Read Only. For example, Read Only Memory arrays. In this application
there is no advantage to using read only memory. It is much more efficient
to use fixed wires than to use switches controlled by fixed memory. Fixed

wires cannot be read back to determine design information.

2. Write Once. For example, PROM arrays. Here the programming is done

by biowing fusible links within the array. Again it may well make more

86
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sense to use fusible links instead of pass transistors as switches rather than
pass transistors controlled by fusible link memory. The choice is complicated
by the need to route high programming voltages to the links without caus-
ing latchup in adjacent CMOS circuits and the need to address individual
fuses. This technology is less widespread than normal CMOS but it is very
important for EPLD applications.

There are several important additional points about fuse based systems
which should be made. Firstly, there is the difficulty of testing write-once
programmable systems. Users can expect some percentage of delivered chips
to be defective and must write their own test vector sets. Secondly, with
fuse based systems it is possible to provide a ‘programming’ fuse which can
be blown after successful programming to isolate the control store from the
inquisitive. Finally, it is worth mentioning that the design of fuse based
systems has totally different ground rules from that of systems based on
transistor switches because the impedance of fuses is very much lower. This

makes long wires and wiring channe] like structures much more attractive.

3. Write Few, Read Many. For example EPROM’s and EEPROM’s. This kind

of control store is highly desirable in EPLD applications for two reasons:-

(a) User Programmable. Users can reprogram the devices quickly using
readily available equipment when designs are changed. Programming
does not involve the manufacturer of the device so devices can be sup-
plied ‘blank’.

(b) Non-Volatile. The information in the device is not lost when power is
removed. This means that no additional circuitry is required at board

level to restore the EPLD program on power up.

(c) Testable. Since the device can be programmed many times manufac-

turers can fully test it before shipping.

(d) Security. EPROM based systems (e.g. [Altera87]) can provide security
for user designs using a ‘no-read’ bit in the control store since such a

bit cannot be cleared without erasing the whole device.
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Unfortunately this technology has several problems as well: programming

uses much higher than normal voltages (about 25V) and special processing

steps are required. Mixing these technologies with normal CMOS logic can

be expected to considerably reduce the density of the array. EEPROM tech-

nology is, however, improving rapidly and it may well become very attractive

as a means of implementing control store in the near future.

4. Write Many, Read Many. There are two main classes of read/write memory

suggested for use in programmable applications.

(@)

(b)

Shift Register Storage. Early cellular designs with writable control
stores all used shift registers. There were several good reasons for this:
firstly early authors were very interested in the fault tolerance proper-
ties of cellular systems. Shift registers can be extremely fault tolerant if
means are provided for altering the path through which programming
information comes to a cell. A second reason was that shift registers
were reasonably area efficient, it is only with MOS technology that shift
register storage has become much more expensive than RAM storage.
Shift registers are also more suitable than RAM for ‘commutative’ or
self programming systems since control information can be generated

in the middle of the configurable array.

RAM Storage. There is no doubt that RAM is the technology of choice
for control stores today. This is because shift registers are necessarily
master/slave designs containing two latches whereas RAM cell designs
contain only one latch. The layout of RAM cells in array structures
is also very eflicient in terms of sharing contacts with adjacent cells.
RAM designs can trade off area in complex peripheral circuits for very

simple and small cells giving very high efficiency in large arrays.

Read/write memory can also implement program security via no-read bits

in the configuration data; this is done in some of the Xilinx LCA chips. The

value of this protection is questionable, however, since a readable copy of the
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programming information must be kept in non-volatile memory somewhere

in the system.

4.2 RAM Control Stores.

These are the normal RAM technologies familiar to all computer users. They
are ideal for the ASIC prototyping and algorithm implementation applications
of configurable logic but not for EPLD applications. All the work to date on
configurable logic has concentrated on this kind of control store. The volatility of
RAM is a major drawback to its use in EPLD applications since it requires that
some form of backing store is provided. There are several ways of reducing this

disadvantage.

1. Separate Arrays. Fabricate chips with two memory arrays: one EPROM
and one with RAM controlling the configurable architecture. On power
up on-chip circuitry automatically programs the RAM from the EPROM
array. The advantage of this architecture is that the high voltages needed to
program the EPROM can be kept well away from the normal CMOS logic.
Both arrays can be dense and only a ‘thin’ communications path is required

between them.

2. Two chips, one package. Place a configurable logic chip and a standard
EPROM chip within the same special package. The CAL chip has special
circuitry to load its control store automatically on power up. The advantage
of this architecture is that the manufacturer of the CAL need not have in-
house capability to build EPROMS. Multi-chip packages are now commonly

used to provide large RAM arrays with low board real estate costs.

3. Battery Back Up. It is fairly common to use lithium batteries to preserve
the state of CMOS logic within computers on power down within circuits
such as clocks and ‘system-configuration’ memories and the same technique

could be applied to preserve the configuration of CAL chips. If battery back
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up is to be used it may be necessary to separate the power supplies for the
RAM and the logical units since the most area-efficient designs of switching
systems use pass-transistor logic which has a small static power consumption

(‘normal’ fully complementary CMOS requires negligible static current).

4. Ferric RAM. Recently, systems have been developed which implement non-
volatile static RAM cells using ferric storage elements. Apart from being
non-volatile these systems have very similar area and performance to stan-
dard static RAM technology. As this technology matures it may well become

the most attractive choice for EPLD control stores.

This section will pursue the selection of a RAM cell design for the configurable
logic architecture in considerable detail. The reason for this attention is that the
design of the RAM cell and multiplexor combination is the dominant factor in
determining the size of a configurable logic array. Although we have separated
the discussion of RAM cell design from the discussion of multiplexor design for
convenience they are very tightly coupled and must be considered together when
designing a programmable chip. There are two main design parameters: area
of the RAM multiplexor combination and delay through the multiplexor. These
criteria are significantly different from those in normal RAM cell design because
RAM read and write times are not critical and the layout of the cell must allow

internal state signals to be brought out to control the multiplexor.

We will now consider the choice of RAM cell design: firstly we will consider
the two main classes of RAM cell design static and dynamic and deal with their
basic properties, then we will consider a number of candidate RAM cell designs
and look at specimen layouts for them. Based on this data we will choose the
design for our configurable logic implementation and discuss what improvements

could be made as the configurable logic technology matures.
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4.2.1 Dynamic Designs.

These are designs in which information is stored as charge on a capacitor, eventu-
ally this charge will leak away and so it is necessary periodically to ‘refresh’ the

storage cell by rewriting the information contained within it.

There are two important problems specific to dynamic RAM designs (figure 4-
1) in this application. '

Refresh Read. All DRAM designs rely on charge sharing between the storage
capacitor and the bit lines to read the cell - this degrades the voltage on the
storage node. The degradation is almost complete because the capacitance of the
bit lines will be hundreds of times greater than the capacitance of the storage
nodes in a large array. Special sensing techniques are normally required to detect
the difference in bit line voltage caused by the read operation. Thus in DRAM’s
read is usually destructive and is immediately followed by a write to restore the
stored value. Note that a whole column of RAM cells must be refreshed after
every read because a whole column of RAM is connected to the bit lines when the

corresponding word line goes high.

In the CAL application degradation of the stored voltage during the refresh
read is not tolerable because it would result in the multiplexors routing wrongly. It
should be noted that the maximum voltage passed by a pass transistor multiplexor
isV, =V, >V, —0.9V: it is important that V, ~ 5V to ensure good performance

and noise immunity in the logic circuits.

Capacitive Coupling. Another important problem is the capacitive coupling
between the ‘logic’ circuitry and the storage nodes (figure 4-1). C, is the storage
capacitor, C; is a parasitic capacitor associated with the controlled transistor.
When the RAM cell is refreshed the value on the logic node is unknown, suppose
it is high and the stored value is also high. At some point the value on the logic
node may go low, the voltage on the storage node will then be divided across

the two capacitors C; and C,. Although C; « C, this is a significant problem
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Figure 4-1: Capacitive Coupling Problem.

because the voltage on C, is also subject to leakage. As pointed out above any
decrease in V, causes a decrease in the maximum voltage passed by the controlled
multiplexor. This problem forces more frequent refreshes and further constrains

the design space.

Noise Resistance. The resistance of dynamic designs to electrical noise or
alpha-particle strikes is much less than that of static designs. In some EPLD
applications this may be sufficiently important to preclude their use. The sort of
error detection and correction codes often used in computer memory applications
cannot be readily applied to a device in which RAM cell output directly controls
logic.

Several methods could be used to get around these problems. In an array
in which computation was synchronised to a system clock, for example, it would
be possible to ensure all gate outputs and array inputs were latched during a
refresh. With care this could allow the computation to be restarted after the pass
transistor control voltages were restored. Use of circuit techniques (e.g. storing
voltages higher that V4 on C;) to limit the effect of the voltage degradation could

also be considered.
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4.2.2 Static Designs.

Static RAM (SRAM) designs are different from dynamic designs in that no refresh
operation is necessary. The information in the RAM cell is conserved by active

elements within it.

Transistor Sizing. It will be noticed that in the trial layouts done below cor-
responding transistors in different designs have different widths. All the p-type
transistors have been drawn at minimum width because they serve only to coun-
teract leakage on the n-type transistor gates, for this reason they can even be
replaced by very high resistance undoped polysilicon. Usually the bit-line pass
transistors are also drawn minimum width to save space. In ‘conservative’ cell de-
signs the pull down n-types are ratioed 3:1 over the bit line pass transistors: this
removes all possibility of spurious writes and also leads to fast read times. It is also
possible to use minimum sized or a 2:1 ratioing of pull downs to save area if more
attention is paid to the design of the peripheral reading and writing circuitry. In
the candidate designs below 3:1 ratioing has been used wherever it did not cause a
large area penalty but where significant space could be saved minimum sized pull

downs have been used.

4.2.3 Candidate Designs.

One Transistor Dynamic. This design uses only one transistor and one ca-
pacitor and represents the ultimate in high density memory (figure 4-2). It only
provides a Q and not a @ output and so it cannot be used with many of the
multiplexor designs in the next section. This design normally uses special process-
ing to increase the storage capacitance and requires complex peripheral circuits
for reading, for this reason it is not suitable for the present CAL chip. The gate
capacitance of the controlled multiplexor transistors will provide at least part of

the required storage capacitance allowing even greater density.
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Figure 4-2: One Transistor Dynamic RAM.

Figure 4-3: Three Transistor Dynamic RAM.

Three Transistor Dynamic. This design (figure 4-3) is an interesting alterna-
tive to the three transistor static RAM. It provides the same function in slightly
less area and with no special processing but requires more complex peripheral sup-
port circuits. The two layouts (figures 4—4, 4-5) illustrate the potential benefits of
bringing out only one state signal. The second layout could be done much more
compactly if 45° degfee lines were available, buried poly-diffusion contacts would

also be useful.

Six Transistor Static. This is the textbook static RAM design (figure 4-6).
It is electrically simple compared to the other RAM designs ‘and very noise resis-
tant. Resistance to alpha-particle and power supply noise can be critical in EPLD
applications. This design is popular in ASIC cell libraries because it requires no
special processing or circuit tricks although it is not generally used for commodity
RAM chips. Area is quite high because of the two bit lines and p-type transistors.
This means using an n-well within the array and the spacing rule between n-wells
and n transistors represents a large area overhead. There are two common layouts

for this cell with one (figure 4-7) or two word lines (figure 4-8).
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RS

Figure 4—-6: Six Transistor Static RAM.

Five Transistor Static. As previous design but with only one bit line and one
word line (figure 4-9,4-10). This design is used by the XILINX programmable
gate array [Xilinx86]. The use of a single bit line requires that word line be
bootstrapped above Vdd during writes. The cell is now only being ‘pushed’ from
one direction rather than ‘pushed’ and ‘pulled’ and bootstrapping is necessary for
the problem case where @) = 0 and B = 1. Raising the word line voltage to V4 +V;
prevents degradation of voltage level by the pass transistor. This design reduces

the RAM cell width by about a quarter over the six transistor case.

Three Transistor Static. This design replaces the p-channel load devices with
undoped polysilicon resistors on a second polysilicon layer and uses buried con-
tacts for poly-diffusion connections (figure 4-11). Both of these steps require
non-standard processing. This is the design used by many commodity SRAM’s
and can be as little as 30% the size of the normal 6-transistor one (for exam-
ple, Motorola's 64K SRAM uses this technique resulting in a storage cell size of
16.6um by 11.4um with 1.5um rules). Connoisseurs of VLSI layout are referred
to (Electronics86] for a plot of this cell.

Much of the improvement comes from the fact that with no p-channel devices
no well and hence no well taps or substrate contacts are required. If we also use
only one bit line then we have a three transistor static cell which is not much
bigger than the dynamic version but needs no fancy peripheral circuitry. This is

the optimal design for CMOS Static RAM’s. The densest layouts cannot be used
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Q = @
Figure 4-9: Five Transistor Static RAM.

Type Trans. | Word Lines | Bit Lines | Outs | X (um) | Y(um) | Area (um?)
Static 6 2 2 Q,Q |36.5 34 1241
Static 6 1 2 Q,Q |29 37.5 1087.5
Static 5 1 1 Q,Q |29 33 957
Dynamic { 3 1 1 Q,Q | 315 25.5 | 803.25
Dynamic | 3 1 1 Q 31.5 23.5 740.25

Table 4-1: RAM Area Comparison.

in configurable logic applications because they do not allow easy access to the @

and @ outputs.

There is some doubt as to whether this design will continue to be optimal as

technology improves. It is possible that with submicron design rules and power

supply voltages reduced to 3.3V (this is the JEDEC standard voltage for submicron

VLSI) it may be necessary to go back to p-type devices as loads and the normal

6 transistor design to obtain sufficient noise immunity {Lineback86].

4.2.4 Design Choice.

There are several considerations which imply that RAM designs for control store

applications can never be as dense as those in all memory arrays:
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Q = @

Figure 4-11: Three Transistor Static RAM.

1. Power Supplies. In very dense memory arrays it is common practice to
distribute power (and sometimes ground) on polysilicon or diffusion layers.
This can considerably increase density since the size of a RAM cell will
otherwise often be forced by metal spacing. This technique is only practical
because of the very low power consumption of memory arrays: metal power
lines are needed in a programmable structure to supply the logic elements.
The metal lines must be quite wide to cope with worst case dynamic power

consumption.

2. Access to State. When the RAM is used to control a switch it is necessary
. that Q and possibly @ are brought out of the cell. This breaks up the array
structure and reduces density. One reason for using a design in which one
RAM cell controlled one switch would be that only @ would have to be
brought out and the resulting increase in the number RAM cells would be
compensated for by a smaller RAM cell design. In the case of the 6 transistor
cell there is no size advantage to only bringing out one signal but in the three

transistor design the size reduction is significant.

3. Substrate Contacts. In a dense RAM array one can get away without as
many substrate and well contacts as one needs in a logic circuit provided
that the periphery of the array is well covered. In the 3 transistor design
where only n-type transistors are used they are unnecessary within the array.
This is important because the spacing rules between diffusion and substrate

contacts are quite large and the contacts themselves waste space.
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Despite these disadvantages there is no doubt that the density of the control
RAM could be significantly improved by using the sort of special processing used

in commodity SRAM chips. There are three main areas where this could help.

1. Wells. The rules about containment of p-transistors within a well and sep-
aration of n-transistors from the well edge can add up to 10um of wasted
space, this is about two metal pitches. Processes which reduce this gap (e.g.
by deliberately sacrificing yield to loosen design rules) or provide high resis-
tance devices as pull-ups so only one kind of transistor is needed are very

advantageous.

2. Buried Contacts. In standard CMOS it is not possible to connect directly be-
tween diffusion and polysilicon layers. Instead two contacts (metal-diffusion
and poly-metal) each approximately the size of a buried poly-diffusion con-
tact are required and there are spacing rules about how close together these
may be. This also wastes space on the metal plane which could otherwise be
used for through signa.ls.' The cross-coupled structure of the RAM cell can

benefit greatly from direct connections.

3. Two Polysilicon Layers. This is used with the poly-resistor design to allow
the resistors to be fabricated on top of the n-type devices further reducing

area.

There is no doubt that the size of the basic RAM cell could be reduced by at least
a factor of two using the techniques above. Use of forty-five degree lines is also

important for several RAM cell designs.

For the prototype design only standard processing was available so the choice
was between the five transistor single word line design and the six transistor double
word line design. The double word line design while being slightly larger allows
more sharing between adjacent cells, is electrically less complex and fits in better

with the multiplexor layout discussed in the next section so it was selected.
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4.3 Multiplexor Design.

As described in Chapter 3 the functionality of the basic cell can be implemented
by a number of multiplexors controlled by RAM cells. Now that we have decided
on the design of our RAM cell we must consider the layout of these multiplexors.
Our cell design calls for 2:1, 4:1 and 8:1 multiplexors, we will deal with the design
of the 4:1 multiplexor only. Designs for the other sizes of multiplexors used can be
derived in a straightforward way although some of the designs illustrated below
cannot be directly extended to 16:1 or larger multiplexors (because of limitations

on the number of pass transistors between buffers).

One optimisation which can be used is to have inverting rather than non-
inverting multiplexors. This means that signals which are routed through an odd
number of cells will be inverted when they reach their destination. The logic units
can cope with inverted input signals simply by changing the logic function being
implemented and, except in pathological cases where an extra cell function unit
could be required, functions can be chosen so that off chip signals have the correct
polarity. These translations can be performed automatically by the program which

produces configuration data for CAL’s and hidden from users.

4.3.1 Candidate Designs.

Several multiplexor designs were considered:-

Full CMOS Complex Gate Multiplexor. This design (figure 4-12) was
quickly ruled out because of its size. Note that because the pull-down and pull-up
paths can pass through three transistors to get the same driving capability as an
inverter built from minimum sized transistors all the transistors have to be three
times as wide. It could make more sense to use minimum sized transistors within

the gate and add a normal inverter to buffer the output.
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Figure 4—12: Full CMOS Multiplexor Circuit Diagram.

Mostly NMOS Complex Gate Multiplexor. This design (figure 4-13) re-
places the PMOS transistors with a single p-channel pull-up which could be put
in the same well as the RAM pull up transistors. Although it is less than half the
size of the full CMOS multiplexor it is still unacceptably large.

Transmission Gate Multiplexor. This design (figure 4-14) implements the

function as a switching structure: i.e. inputs are connected to sources and drains,

i

m: [
= 7w =
Tef oo T 2o

T

il

Figure 4-13: Mostly NMOS Multiplexor Circuit Diagram.
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Figure 4-14: Transmission Gate Multiplexor Circuit Diagram.

not gates. It has an advantage over pass-transistor designs in that transmission
gates do not compromise logic levels. The need for true and complement control
signals is not a major disadvantage because the RAM can supply both. The
problem is the number of transistors required and the fact that half must be
in one well and half in another, the circuit diagram is intended to suggest an
appropriate layout with n-type and p-type transistors grouped together and the
RAM cells central.

Pass Transistor Multiplexor. This design (figure 4-15) is extremely compact
while still providing high performance. Of course, because only n-type transistors
are used there is a problem with reduced logic 1 voltages. Provided that the depth
of each multiplexor before buffering is limited and the chip power supply system
ensures that there are no large degradations in supply voltage in the middle of the

array this is perfectly acceptable.
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Figure 4-15: Pass Transistor Multiplexor Circuit Diagram.

A layout for this multiplexor is given in figure 4-16.

RAM Cell/ Switch Multiplexor. The ‘tree’ designs of pass gate multiplexor
all have multiple switches along the path between inputs and buffers. This reduces
performance because of the extra resistance. One could get away with a single
transistor on each input if a Ig(n) to n decoder was placed between the RAM and
the controlled transistors. Unfortunately, this would require too much area. A
better idea for small multiplexors is to use n RAM cells: one per switch (figure 4-
17). This implies that the efficiency is no longer increased by having a number
of inputs which is a power of two. The overhead is not quite as bad as it seems
because denser RAM cell layouts can be used when only one state signal needs
to be brought out. This design would be very suitable for a configurable loglc
chip which used 3 transistor CMOS or 1 transistor dynamic RAM cells. There a

considerable area penalty if standard 6 transistor RAM’s are used.

This multiplexor has one important problem not shared by the other designs:
not all possible RAM values correspond to legal routing permutations. In some
cases contention between input sources will result causing static power dissipation.
The problem is significant at power-on when there are random values in the control
store and during refreshes if a dynamic RAM is used. The problem can either be

accepted or global signal can be provided to switch the multiplexor outputs to

Out



Figure 4—16: Pass Transistor Multiplexor Layout.
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Figure 4-17: RAM Cell/ Switch Multiplexor Circuit Diagram.
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Figure 4-18: Mixed Pass Transistor Multiplexor Circuit Diagram.

a high impedance state: this is especially easy if clocked multiplexors are being

used.

Mixed Pass Transistor Multiplexor. At first glance, it appears that one
could get the best of both worlds by using both n-type and p-type transistors in the
pass transistor tree (figure 4-18). In this case only Q would need to be brought out
from the RAM. Unfortunately, this design has serious electrical problems: any path
through the tree which involves both n-type and p-type transistors .= will have
both the logic zero and the logic one voltages degraded. This compromises noise
margin to a dangerous degree. The lower conductance of the p-type transistors

requires wider transistors to produce equal performance and the need for an n-
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well will cause a significant area penalty. Although the 4:1 mixed multiplexor
is problematic, 2:1 mixed multiplexors can be extremely useful if care is taken.
They are used, for example, in the input selection network of the Xilinx LCA

combinational function.

4.3.2 Performance.

Perhaps the most important performance parameter for a CAL is the delay and
bandwidth of the routing multiplexors. This was simulated using the worst case
loading configuration where every multiplexor in the next cell selects the output
of this cell (e.g. if we are talking about a NORTH output multiplexor then the
North,West,East, X1 and X2 multiplexors in the cell to the north all select South).
The results are given in table 4-2: the times are between the input step waveform
going through 2.5V and the output of the heavily loaded multiplexor following
it. Note that since the multiplexors are inverting the rise time figure corresponds
to a falling input signal. It is important not to read too much into these figures

because of problems with the simulation program used (Chapter 5): convergence

could not be obtained under identical conditions for all the circuits.

The simulations were done on hand coded circuits (not circuits extracted from
actual layouts) and used worst case process parameters: for these reasons direct
comparison with performance figures for the Xilinx LCA architecture would be un-

safe. Such comparison could only be done fairly using measurements on fabricated

chips.

It 1s worth pointing out an additional advantage of using inverting multiplexors
to route between cells. Normally the rise time of signals in CMOS will be longer
than the fall time (because n-type transistors are more conductive). Using dou-
ble width p-type transistors can help but it increases the load capacitance (since
each multiplexor drives 4 similar multiplexors in an adjacent cell) thus marginally
increasing the fall time and requires more area. When considering the worst case
delay of signals through a long chain of non-inverting multiplexors one would have

to consider a rising signal whereas with inverting multiplexors one must consider
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Name. Fall Time. | Rise Time. | Notes.

Full CMOS 2.2ns 2.5ns Unit n, Double Width p

Mostly NMOS lns 5.6ns Triple width n, Double Length p
TxGate 3ns 2.7ns Double width p-type

Pass Transistor 2.4ns 3ns Unit n and p type

RAM Cell/ Switch | 2ns 2ns Unit n and p type

Table 4-2: Multiplexor Delays.

the average of the rise and fall times. Thus the delay through a long chain of in-
verting multiplexors will be approximately the same for high going and low going
signals. For this reason it was decided to make both n and p type transistors in

the inverter minimum size.

Summary. Of all the multiplexor designs studied the one RAM cell per switch
design has the best area and delay characteristics: however suitable RAM control
stores require special processing. Of the other designs the pass transistor multi-
plexor is the clear favourite because of its efficient use of control store and small
size. Its performance is also competitive with the less area efficient designs. An-
other advantage of this design is the natural way in which the logic circuits can
be mixed with the control store in a dense array using the normal CMOS layout

style.
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4.4 Cell Design.

Given our design for the basic 4:1 multiplexor and the cell design outlined in the
last chapter how do we build up a VLSI layout for a whole Configurable Logic

cell?

Several possible floorplans are given in figure 4-19: the labelled boxes imple-
ment the configurable logic function and routing multiplexors described in the last
chapter (figures 3-9, 3-10). There were three main criteria used in selecting the

floorplan.

1. Wiring Space. The RAM cell bit lines and power lines are running horizon-
tally along rows from left to right on metal 2 and the word lines are running
vertically on polysilicon. This means that it is much easier to have wiring
areas running left to right than top to bottom since it is hard for metal wires
to cross the rows of RAM cells. This suggests using the one row or two row

floorplans.

2. Aspect Ratio. It is important to maximise the ratio of the ‘area’ (number of
cells) to ‘perimeter’ (number of I/O connections) to reduce pin count. This
favours near square basic cells and militates against the choice of the one

row design.

3. Wire Length. For performance reasons one wants to keep the longest wire
within a cell to a reasonable size. It is also desirable that North to South
and East to West signals traverse approximately equal distances to keep the

delays approximately the same.

For these reasons the two row design was chosen. At the top and bottom of
the cell are strips containing the controlling RAM and multiplexor output buffers.
These face a central area containing the pass transistor logic and wires which

implement the routing and logic function.
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Figure 4-19: Basic Cell Floorplan.

The two row organisation of the cell groups n-type transistors in the middle
and p-type transistors along the top and bottom edges. This allows well sharing
between adjacent cells. Designs which did not group transistors of the same kind
together would pay a heavy penalty in area because the design rules force a large

spacing between different transistor kinds.

In order to realise the 20 functions 6 bits of RAM are used to control the
function block. The longest path from a cell input through the function block to a
cell output is through 3 multiplexors. The multiplexors in the function block are
much less heavily loaded and therefore faster than the routing multiplexors giving
a worst case delay between a cell input change and a consequent change in cell

output of around 10ns.
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Figure 4-20: Logical/Physical Wiring Scheme.

4.4.1 Aspect Ratio.

One of the main challenges in the design was to get a logically square array of cells
in a physically near square chip. The two row design has an aspect ratio of about
3.5 to 1. It was very difficult to see how to change the layout to improve the aspect
ratio without sacrificing large amounts of area because the layout is constrained
by the RAM design. The solution chosen was to build a rectangular array of cells
with four times as many cells in the vertical as the horizontal direction: this results
in a near square chip after extra peripheral circuits in the horizontal direction (for
RAM programming and global signal buffering) are counted in. These cells are
then wired up with groups of two cells vertically connected as if they were separated
horizontally (figure 4—2@: this results in a logically square array. This requires
small wiring channels areas at the left and right of the basic cells to implement the
more complex structure. These wiring channels were done by hand using all three
wiring layers and result in a minimal increase in total area (initially automatically
generated routing was tried but it proved to be extremely inefficient - the router
attempted to place all vertical signals on one metal layer and all horizontal ones on

the another and wasted a large amount of area doing unnecessary layer changes).
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4.5 Input Output Blocks.

In this section we will consider the design of Input/Output (I/O) circuits for the
configurable logic architecture. Firstly, we will consider the reasons for providing
special I/O and secondly we will consider appropriate designs for CAL’s which are

to be used as stand-alone EPLD’s and as components of larger arrays.

There are three main reasons for providing special I/O logic.

Pin-Count. There can be a large mismatch between the number of wires that
can emerge from the edge of a VLSI array architecture and the number of wires
that can be connected to pads. The total number of inputs and outputs in a CAL
array grows as 8n where n is the dimension of one side of the array, the number of
cells in the array grows as n? (we will consider only square arrays since they have
the best ratio of perimeter to area - CAL designers can avoid building rectangular
arrays). The largest package readily available when the prototype was designed
had 144 pins, although packaging is improving rapidly and the latest LCA chips
use 175 pin packs [AMDS88]. This means that after taking into account necessary
overheads like power and ground and control signals the biggest size of array which
can be accommodated with all I/O signals going off chip has 16 cells on a side.
This is a serious problem since one could have a 32x32 array if only silicon area

needed to be considered.

Power Consumption. The driver transistors in pads have length to width ra-
tios hundreds of times larger than the minimum size transistors in the centre of
the array because pads have to drive highly reactive loads and therefore need to
source and sink relatively high currents. CMOS pads are rated at between 1 and
20mA. These currents are not just arbitrary maxima but will actually flow ev-
ery time an output changes as the external capacitance is charged or discharged.

This means that even if a package with enough pins were available the potential
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power consumption of a chip with 128 (=32x4) output pads would require careful

consideration.

The number of pads required does not grow simply with the number of inputs
and outputs since it is necessary to add additional power and ground pads for every

n,(n ~ 8) output pads simply to cope with the demands of the pads themselves.

Interface. Another important reason for having separate [/O blocks is to in-
terface with other systems. For example, it may be desirable to have some bidi-
rectional pads at the edge of the array to allow the programmable device to be
connected to a Tri-State bus. This consideration is more important in less general
EPLD architectures where special latches for input and output signals are often

provided.

4.5.1 The CAL EPLD Approach.

EPLD’s are generally used as stand-alone devices so one wants to put as large an
array as possible on one chip. It is also desirable to use low pin count Dual-In-Line
(DIL) packages to reduce costs and board real estate. This implies a high degree
of multiplexing at array edges. The CAL philosophy is that special purpose 1/0
blocks should be avoided if at all possible because they add a different kind of
entity to the system. This complicates everything from the chip design itself, to
the CAD system to the user’s conceptual view of the architecture. I/O blocks
tend to be irregular and ugly things - the kind of design where users must look at

a manual to see if a particular situation can be coped with.

It was decided, therefore, to use the routing network within the array cells
to provide the multiplexing required. At the moment it is necessary to share one
bidirectional pad between two inputs and two outputs to match up the capabilities
of the silicon and the packaging. Cells are grouped in pairs: the first cell’s output
drives the output data line to the pad and the second the enable line to the pad.
The input from the pad is connected to the input lines of both cells. A diagram

of this a.rré.ngement is given as figure 4-21. Normally, the function units of the
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PAD —

Figure 4-21: CAL Pad Multiplexing Scheme.

peripheral cells connected to the pads will be used for I/O functions (e.g. inverting
or latch output signals or using the constant 1 and 0 functions to make the pad a

dedicated input or output).

The CAD software will handle the I/O problem as follows: the user will design
his system as an array of cells smaller than that available on the chip and the
software will attempt to embed his design in the physical cell array so that all I/O
signals can be routed to the pads. In some cases this will not be possible and the

program will give an error message.

4.5.2 The CAL Array Approach.

This CAL design has a very different I/O requirement from the EPLD: in order to
build up a large array from many smaller single chip arrays all inputs and outputs
from each smaller array have to be available externally. This seems to limit the
size of the arrays which can be fabricated as a single chip size unit to sixteen
by sixteen cells. This is indeed the size of the first CAL chip designed for this

application.

Multiplexing several inputs or outputs onto the same pad transparently to the
user is quite attractive in the CAL architecture and need not lead to excessive
performance losses. Even general purpose CMOS pads taken from ASIC libraries
can switch fast enough so that the pad-propagation delay between two cells on
neighbouring chips is about the same as that through 3 routing multiplexors. In
a catalogue part CAL design carefully designed pads and appropriate packaging
technology coupled with the fact that pads need only be capable of driving a
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single input on an adjacent chip ¢
user designs will go through tens of routing multiplexors and several levels of gates
so the pad delay is relatively minor. Transparent scaling of the CAL architecture
across chip boundaries is possible using a scheme which takes advantage of two

other factors;

1. Most Potential Connections will be Unused. Most designs will use only a
small fraction of the available connections at the edge of the array but the

connections used will vary from design to design. By including some extra

designs (and hence delay in crossing chip boundaries) can be reduced.

2. Used Connections will change state relatively Infrequently. We have seen
that the pads can switch much faster than the average signal in a user de-
sign. Many user signals will switch very infrequently. For this reason a
scheme which transmits changes in user signals rather than values of user
signals is potentially much more efficient. An important side effect of this
scheme is a reduction in power-consumption: in a traditional time-share
multiplexing scheme if two output signals have different constant values the
shared pad would have to change state every cycle using more power than

an implementation with separate pads for both signals.

Naturally, such a scheme would cause an increase in the complexity of periph-
eral circuits where CAL must interface with other logic families: one way around
this problem would be to allow the specialist I/O circuits on a given side the CAL
chip to be programmed to select a traditional EPLD-like multiplexing scheme

rather than the specialist scheme for CAL to CAL communication.

In the longer term special packaging for CAL array parts (such as that used to
place many RAM chips together within a single unit) would be desirable since to
decrease the load on ‘internal’ output signals and allow smaller pads dissipating
less energy to be used. This is an important reason for considering wafer scale

integrated versions of the architecture (Chapter 5).
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4.6 Programming.

The design goals for the RAM programming logic are firstly that it should have
a clean and easy to use external interface, secondly simplicity to ensure that it
works on first silicon and uses little area and thirdly that it should allow reason-
ably fast read and (more importantly) write access. These goals are considerably
different from those of normal RAM designs where speed of reading and writing

is paramount.

4.6.1 External Interface.

The best external interface for CAL depends on its application: the EPLD design

has different requirements from the array component design.

EPLD Design. In the EPLD design the most important goal is to reduce the
complexity of the interface to the outside world. This design cannot expect to have
a friendly computer to load its programming data. Pinout must also be minimised

to reduce cost.

For these reasons it was decided to make use of static shift-register counters as
address logic rather than conventional address decoders. This means that users of
CAL’s need only generate a serial data stream and a clock signal for programming
thus reducing system overhead. The use of static shift registers means that the
only timing constraint is on the maximum clock frequency. This decision has the

side effects of reducing area, design complexity and pad requirements for the CAL.

Control. The programming circuitry requires five external signals:

1. PROG. This signal is analogous to the CE input on conventional RAM’s: it
tells the programming logic to pay attention to the read/write signal.

2. Rd/Wr. This determines the direction of data flow on the Din/Dout pad.
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3. Clock. This signal is used to clock the shift register counters to address

successive RAM cells. Data input and output is synchronised to this clock.
4. Reset. This signal clears the counters to address the first RAM cell.

5. Din/Dout. This is a bidirectional pad for data input and output: the direc-

tion is controlled by the read/write input.

The circuits for controlling the RAM’s are very much simpler than in standard
RAM designs. There are no sense amplifiers for reading: instead a simple inverter
is used. Bit Lines are pulled up statically using long p-type transistors rather than
the conventional precharge circuitry to simplify timing. The transistors within the

RAM cell itself are sized conservatively to ensure reliable read and write operation.

Array Design. CAL arrays will be most useful as a board within an existing
computer system: it makes sense, therefore, to map the control store into the
memory of the host and provide logic on chip to do address decoding. In order
to reduce the number of pads required (this is important because the arrays are
already pad limited) it makes sense to share pads between address and cell inputs.
A control signal would determine whether addresses or data were being passed.
Pad sharing would make it hard to change the contents of the control store during

computations - this may be a serious drawback in some applications.

4.6.2 Internal Design.

This section will deal with the internal design of the EPLD interface described
above. This was the interface used on the prototype CAL chip and the only one
designed in detail. Many of the points would also be applicable to the address
based array interface. An implementation of the array based interface could use

one of the ‘textbook’ decoder designs [Weste85].

Word Lines. The word lines are run in polysilicon vertically and have a large RC

delay. Simulation showed it was necessary to install repeaters on these lines every
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10 cells to get reasonable access times for the RAM’s. Even with these repeaters in
a 1024 cell array there would still be a 25ns (worst case) delay between the input
to the word line buffer and the word line transistor in the farthest RAM cell.

The most obvious method of decreasing this delay would be to run word lines on
a metal layer: this would incur a very large area penalty with current technology
although extra metal layers could change this situation. The other alternative
would be to duplicate the address decoding logic, in this case only a serial data
stream or a set of address lines would need to be distributed on metal. The first
step would be to have two address decoders one at the top and one at the bottom
of the array, halving the length of the polysilicon word lines. This technique
would probably be necessary if the CAL were extended to 64x64 arrays in lum
technology. Placing extra address decoders in the middle of the array to further
reduce word line length is not particularly attractive since it would increase the

length of inter-cell communication paths.

Bit Lines. The bit lines are run horizontally in metal 2. The RC factor is
small enough to allow reading and writing logic to be placed at one side of the
array. Conventionally, this logic would be placed centrally and the array would
probably be partitioned further. In a CAL, however, the access time of the RAM
is secondary to the delay time between cells and splitting the array would mean
routing inter-cell signals across about 200um of RAM control logic. This is made
harder by the fact that this logic must be pitch matched to the CAL cell (or
the vertical dimension of the chip would be increased) and the layout is quite
tight. It would be possible to duplicate the bit line logic on the other side of the
array to half bit line length if speed was felt to be critical (the advantage of this
would be mainly on reads where the RAM transistors which must act through the
relatively high resistance of the unit size word line pass transistor drive the bit

line capacitance).

The write cycle time is more important than the read cycle since reading the
RAM is only necessary for testing. The consequence of this fact and the long word

line delays' is that, in the current design, there is no reason to-fine-tune the RAM
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control logic for speed. It is very easy to ensure that the bit line voltages are valid
when the word line goes high and this is all that is required. It is also possible
to use static pull ups on the bit lines because the shift registers impose an order
on the write requests. Although it takes a relatively long time for the pull ups to
restore the voltage on the bit lines no cell in the row can be accessed again until

the shift register has cycled through all the other rows.

Since the only time the RAM will be read is during testing (to ensure it is
functional) it was not critical for performance reasons to have a sense-amplifier
and a simple inverter was used instead. The reason for this decision was that if

any errors were made in the sense amplifier design the chip would be untestable.

Shift Register Counters. The shift registers are built from simple ratioed
CMOS master slave latches using a two-phase clocking scheme. The row and
column shift registers have the same circuit but different layouts because they must
pitch match to different cells. The column register layout is slightly convoluted
because its width must be less than or equal to that of a RAM cell. As well as the
clock signals a clear signal is necessary. The first registers in the row and column
chains master latches clear to 1 to insert the ‘tokens’ which are shifted round. The
row register clocks are generated by splitting the CLK signal from off chip: ¢,
corresponds to CLK=0, ¢; to CLK=1. The column clock signals are generated by
splitting the feedback line of the row registers: thus the column register is clocked

every time the row register has gone thorough a complete cycle.

Cycle Times. The major constraint on timing is the word line delay, once the
word lines are high the RAM cell will write very quickly. If the users data input
clock frequency is set to 10MHz then there is a large safety margin, at 20MHz the
clock signal cannot be symmetrical since ¢, (corresponding to CLK=1) must be

high for at least 30ns to allow for word line delays.
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4.6.3 Possible Improvements.

The RAM programming logic is the area of the CAL chip most likely to be changed
in later designs. This is because it was deliberately kept very simple: one major
reason for this was that more complex designs could not be simulated adequately
with the tools available. RAM control logic has complex timing and electrical
characteristics and there is little chance of producing a working design on first
silicon without good simulation. Despite this, high performance, particularly on
write cycles will be required from RAM’s which are to be used as array compo-
nents to allow fast downloading and changing of programming information. Some

possible improvements are listed below.

Cell Based Programming. Currently, the CAL programming is based on
RAM addresses rather than cell addresses. In some applications it would be
preferable if the chip could interpret a cell based protocol e.g. program cell at
< z,y > with < 20 bits of programming information >. The mapping between
RAM addresses and cell addresses is complicated by the logical/physical wiring
scheme and the fact that the programming data for one cell is on two separate rows
of the RAM. To implement such a protocol a small controller would be needed on
chip: some speed reduction could also be expected. The Xilinx LCA product uses

a fairly complex programming protocol.

Parallel Writes. In theory, it is possible to write all the cells in one column
of the RAM in parallel. If this is combined with a very fast serial or parallel
interface to the outside world much faster write times can be obtained (c.f. Video
RAM'’s). The main cost would be in the complexity of the programming interface
to the CAL (since there would be a very fast burst of input as data was entered
followed by a pause while the programming occurred). An important reason for
providing such an interface would be to reduce the testing times for CAL’s where
a large number of different configurations must be input. This technique would
be a natural extension to the present design which already duplicates reading and

writing logic for each RAM row.
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Duplicated Bit and Word Line Logic. As has already been mentioned bit
line and word line logic can be duplicated on each side of the array to reduce delays.
This, coupled with careful design of the storage cell and peripheral circuits could
reduce the cycle times of the CAL RAM to the same order as that of commercial

static RAM’s.

4.7 Global Signals.

4.7.1 G1 and G2.

The G1 and G2 signals are distributed horizontally along rows and vertically up
the right side of the chip in metal 2. There are two levels of buffering, one per
row connected to the common vertical bus and a single buffer to drive the vertical
bus at the base of the array. Because of the low resistance of metal 2 two levels
of buffering with large transistors suffice. The worst case delay on these lines is

small enough to be ignored in user designs.

4.7.2 Ftest.

This is the global test output which can be taken from the function block of any
cell. Each cell has a single bit of RAM which will be 1 if that cell is to drive
FTEST. Because the state of the RAM’s is unknown on power up and the chip
must not fail if erroneous data is programmed into it this line is made open drain
so that contention between cells cannot occur. At the right edge of the array is
a pull up for each row and a simple charge sharing sense amplifier. To improve

speed the line is not pulled up all the way to V4 or discharged all the way to V,,.

The global signal is derived by having another common drain line running
vertically along the right of the chip with a similar pull up and sense amplifier at
its base. The sense amplifiers are necessary to increase speed since the utility of

this function depends on it being able to work at the normal operating speed of
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the device. Simulations suggest that the delay between the FTEST output of the
farthest cell and the output line to the pad will be about 6ns.

The sense-amplifiers for this function are the only ‘tricky’ circuits on the chip.
It was thought reasonable to include them here because if they fail then only a

small part of the chip’s function is lost: if they are successful then they could also

be used in the RAM read logic.

4.8 Power Supply Distribution.

Power supply distribution is a harder problem for configurable circuits than for
most designs because power consumption can vary greatly according to the circuit
being emulated. Two conditions must be satisfied: metal migration limits on
conductors must not be exceeded and worst case voltage drop on the path to any
active component must be small. Limiting the voltage drop is especially important
in this design because of the use of n-type pass transistor logic which has less noise

margin than fully complementary logic.

4.8.1 Array Requirements.

In order to determine power supply requirements a SPICE model of the basic 4:1
multiplexor was built. It quickly became apparent that the RAM power consump-
tion was negligible compared to dynamic power dissipation in the multiplexors.
It was decided that the power supply system should be designed to cope with
every multiplexor in the array passing a 50MHz signal. This resulted in a current

consumption for the 1000 cell array of 528mA.

Real designs where signals pass through several levels of logic will clock nearer
10MHz, most ‘data’ signals will not change value every clock cycle and a large
proportion of the routing and functional hardware will not be in use. Setting the

speed to 10MHz divides the power consumption by 5 and the other two factors
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will probably amount to another factor of 4 giving a current consumption in the

array of around 25maA.

Although the worst case consumption will never happen in normal user de-
signs someone could conceivably configure the array with a path through all the
multiplexors and arrange a fast input signal. Where possible computing struc-
tures should not be susceptible to physical damage from running legal programs.
Another good reason for allowing for high currents is that ring oscillators can be
formed on the array by random values in the control store on power up: it is
extremely unlikely that such a configuration would approach the worst case but it
is better to be safe than sorry. Systems which use CAL’s (or other general config-
urable parts like the XILINX array) should program the array as soon as possible
after power up to break ring oscillators and make sure pads are driven by proper
signals. Future CAL chip designs may include circuitry to clear the control store

on power up, this is already available in the latest Xilinx LCA.

Sizing the conductors appropriately to support the worst case current meant
that the voltage drops in the centre of the array were insignificant. The strategy
adopted is shown in figure 4-22. All these tracks run in metal 2 whose resistance
and metal migration limits are three times better than those of metal one. The
array is supplied by four power and four ground pads. Vertical buses 100um wide
in metal 2 run up the edges of the array. These are connected to 12.5um wide
horizontal buses which travel along the rows of RAM cells. Since the horizontal
and vertical buses are refreshed at both ends their current capacity is effectively
doubled. It turned out that the horizontal power buses did not increase the width
of the RAM cell design which was forced by diffusion separation rules. It must be
noted that if one of the very dense RAM cell designs discussed earlier had been
used ta,king this conservative approach to power supply design would have resulted

in a large area overhead.
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Figure 4—22: Power Supply Grid.

4.8.2 Pad Requirements.

The pad requirements obviously vary from array to array and with the pad library
used. Only output pads are important for these calculations. The only design
taken to this stage was for a 16x16 array which required 64 output pads. In this
design one could just get by with the 4 power and 4 ground pads for the array
providing power to the pad ring as well. It was necessary, however, to carefully
arrange the pads so that no output pad had too many other output pads between
it and the nearest power pad. The present design uses standard library pads,
future designs will probably split the power sources for the pads and logic circuits
to reduce power supply noise caused by heavy pad switching currents and use
specially designed pads: this could potentially provide a significant area reduction

and performance increase.

Unfortunately, worst case design of power supply for pads is not feasible for
designs intended to be subcomponents of larger Arrays. Even if wide enough metal
wires and many power pads were provided the heat dissipated would require special
packaging. Users must take responsibility for ensuring that excessive demands are
not made: it is highly unlikely that a real design would use most of the output
pads or if it did that they would be switching as fast as theoretically possible.
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CAD programs could be developed to detect when such situations could occur

and warn the user.

4.9 Summary.

This chapter has concentrated on the engineering of an implementation of the
CAL architecture in 2um CMOS. The major considerations in any such design
have been discussed. Ways of improving the implementation given more design

effort and better processing technology have been presented.



Chapter 5

Specific VLSI Implementations.

This chapter will consider specific mappings of the configurable logic architecture
into silicon. Three specific designs have been attempted. The first of these is
a chip to implement CAL, this chip contains a 16x16 array of the configurable
cells designed according to the principles in the previous chapter. The second is
the Configurable Logic Array (CLA) which uses the second metal mask instead
of RAM to personalise an array of basic cells. This system was designed in con-
junction with Genbao Feng who is responsible for the function block design used.
The CLA was designed to allow direct mapping of systems prototyped using the
dynamically programmable technology into silicon. Since only one mask is being
changed techniques such as laser zapping can be used to configure standard chips.
quickly and cheaply. This architecture is interesting from another point of view as
well: it occupies the middle ground between dynamically programmable systems
where configurability is expensive and cellular designs are most efficient and full-

custom silicon where configurability is cheap and cellular designs are inefficient.

The third topic covered in this chapter is a proposed wafer scale version of the
dynamically programmable architecture. Wafer Scale Integration (WSI) appears
to hold much promise for dynamically programmable hardware: the original re-
search in this area (e.g. [Shoup70]) had wafer scale integration in mind - although
he considered each cell as being one chip on a wafer. Technology has improved a

little since then!

129
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5.1 The CAL Chip.

5.1.1 History.

Throughout the course of this project it has been intended to design a chip to
implement dynamically programmable CAL. This chip design went through three
major iterations as the processing technology available changed: from 6um NMOS
to 4um CMOS to 2um CMOS. Only the final design was covered in Chapter 4 but
the experience with the other two means that all the major design problems have
been tackled in more than one way giving high confidence that the final design is

near optimal.

During the course of this project two design systems were used: the de-
partment’s internal ILAP system [Hughes82], for which a new leaf cell editor
QV [Kean86] was written to support this design and MAGIC [Hamachi85] from
the University of California at Berkeley. It is safe to say that without the Berkeley
VLSI Design tools and the availability of a commercial 2um process the chip could
not have been .designed efficiently enough to be viable.

The present design consists of a library of leaf cells, these cells were designed
as components of a (32 by 32) 1024 cell array and all transistor and power line size
computations were done assuming this size of array. Use of more advanced design
automation systems would allow for autoscaling of power lines and key driver
transistors with array size. These present cells can be used to build arbitrary
sized logical arrays up to 32 cells wide and 32 cells high (a 16 by 64 physical
array): note the limit is on maximum dimensions in a given direction to limit wire

lengths rather than on the ‘area’ of the array.

5.1.2 Chip Design.

As can be seen from the plot of the CAL (figure 5-1) the design is fairly dense

and consists of a large array of cells with peripheral circuits on the left and right
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Figure 5-1: CAL Chip Plot.

and word line drivers and control logic at the bottom (figure 4-22). The logic on
the left of each row is concerned with reading and writing the RAM and the logic
on the right is concerned with the G1,G2 and FTEST signals for that row. There

are also large power busses on either side of the array - these are sized for the 1024

cell design.

The logical 16x16 array on the prototype CAL is formed from a physical 8x32
array and, after counting in peripheral circuitry, has a core (i.e. before pads)
symbol size of 4817 by 4596um. All peripheral signals from the array are brought
out then and after taking into account power, programming and the global G1,G2
and FTEST signals the chip uses all the pins in a 144 pin Pin Grid Array (PGA)
package. This design of CAL could be used to produce an array big enough
to emulate an ASIC by connecting multiple chips togethe\:t at board level. This
version of the design has been fabricated but because of very long delays at the

processing plant it was not shipped until after the funding for this project ran
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out. Testing carried out at the processing plant shows that the chip has no gross
electrical problems (such as power-ground shorts or latchup) but it has not been
possible to build a full test rig for the device (this would require a fairly complex
interface to a host computer in order to download programming information and

monitor chip inputs and outputs).

For PLD applications,on the other hand it is preferable to have as large an
array as possible on one chip and use a multiplexing scheme at the edge of the
array. For example, a logical 30x30 array would have; a core symbol size of 8177
by 7450 pum and could share one bidirectional pad between two peripheral cells
(the output of one cell driving the Three-State control and the output of the other
driving the pad output, the input from the pad being connected to both cells
inputs). This design would fit in a 68 pin DIL package.

Table 5-1 gives an estimate of how array size will grow with processing tech-
nology. Naturally, such figures should be taken with extreme caution since key
design rules such as metal pitch do not scale in the same way as the transistor gate
width used to typify the technology. It can also be expected that the cell design
itself will be improved in the next design iteration and it is not unlikely that major
‘process improvements such as provision of extra metal layers will occur. The entry
for ‘special’ CMOS indicates a process with some support for RAM: about half
the CAL area is taken up by RAM cells and processing support for them could
have a major impact on array size. We assume that we want the chip to be around

lcm on a side to maximise the number of cells while obtaining reasonable yield.

5.1.3 Design Validation.

Two simulation programs were used to validate the CAL design: SPICE [Vladimirescu87]
and RNL [Terman87].

SPICE. SPICE (version 2G6) was used for circuit level simulation of key com-
ponents such as the RAM cell and the basic 4:1 multiplexor and to obtain timing

information for the global signals. SPICE was perhaps the least satisfactory com-
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Technology. Array Size. { Notes.

Generic CMOS 2um | 32x32 > lcm on a side
Generic CMOS 1.5um | 32x32 Reasonable Size
Generic CMOS 1uym | 48x48 Reasonable Size
Generic CMOS 0.8um | 64x64 Reasonable Size
Special CMOS 1um 64x64 Reasonable Size

Table 5—1: Projected Improvement of Array Size with Processing Technology.

ponent of the Berkeley tools package: it has an extremely poor user interface and
the numerical algorithms used are very temperamental. It is normally necessary
to juggle with the simulation temperature and add nonexistent large resistors and
small capacitors to critical nodes to force the numerical algorithm to converge.
This made it impossible to set up simulations which described exactly the circuit
and timing parameters that one wanted. SPICE simulations were done with hand-
coded rather than extracted circuits to give enough control to make the simulations
converge. The simulations which were done give a high confidence of design cor-
rectness but the timing figures which resulted (Chapter 4) are questionable and
should be read as absolute worst-case figures (resistance and capacitance values
were overestimated and slow process models were used to force convergence since

SPICE seemed to have more problems with fast rising and falling signals).

RNL. RNL is a switch level simulator with a LISP based interface developed
at MIT and improved at the University of Washington. It was used with circuits
extracted from the chip layout by MAGIC. RNL has a very limited circuit model
in which transistors are replaced by one of two specified resistance values according
to whether the simulator thinks they are ON or OFF. Higher resistance values are
used for n-type transistors passing logic 1 and p-type transistors passing logic 0.
There are three possible logic values 0,1 and X. This model works reasonably well

for fully complementary CMOS designs but has problems with ratioed circuits
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such as RAM cells and n-type pass transistor logic. Circuits with feedback are
prone to ‘catching X’s’ where a real circuit would quickly leave the intermediate
state. Means are provided for giving ‘hints’ to allow correct simulation of such
circuits but to some extent this defeats the object of the simulation: this feature

was only used for areas which had already been verified using circuit simulation.

For the purposes of simulation a 6 by 3 logical (3 by 6 physical) array of cells was
built. This represents the smallest repeating unit in the design so that simulations
done using it would check every component of the larger arrays (for this reason
RAM column buffers were inserted in the array although they are not necessary
for so small a design). Even with this reduced array size switch level simulation
was very time consuming: much of the time went on circuit initialisation (where
the simulator attempts to assign initial values to nodes in the circuit) because of
the amount of state in the design. Every simulation on the array had to be left to
run overnight on a SUN 3/260 and had normally completed by the morning. This

severely restricted the number of simulations that could be done.

Once this model had been built several simulations were done to test the cor-

rectness of the design:

1. RAM Programming. The programming circuitry was verified by a simulation
which programmed every RAM cell on the chip and then read back the
results. Several patterns were used (e.g. 101010...., 11001100..., 000000...,
11111....). In the course of this simulation several errors were found in the
programming circuitry and corrected. Some redesign of peripheral circuits
was done (changing ratioed logic to fully complementary logic) to make

simulation easier.

2. Cell Function. This simulation was run on extracted data representing a
single cell function unit. The function unit (Y1,Y2,Y3 multiplexors) was
presented with every possible input pattern (plus some repeated patterns to
check the latch functions). The output was checked to ensure that all the
cell functions were performed correctly. As a result of this simulation some

minor changes to the function unit design were made to reduce the maximum
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path between buffers from four n-type pass transistors to three n-type pass

transistors.

3. Chip Function. This simulation was done in two parts: firstly the chip was
loaded with programming information representing a particular design and
secondly the configured chip was presented with data inputs to check that
the design was implemented properly. The design chosen was two of the
toggle flip-flops from the stopwatch example (Chapter 7). In the course of
getting the flip-flop example to work many smaller designs were tried and it
is unlikely that any major faults remain undetected. The only component
which has not been fully verified at the chip level is the FT EST signal whose
sense amplifier circuitry was beyond the capabilities of RNL: it is, however,

fairly simple and the amplifier design has been verified using SPICE.

Other Verification Tools. As well as simulation the netlist extraction tools
available were used to check the continuity of important signals. This proved to
be a very useful technique since a netlist extraction can be done much faster than
a simulation. Using this technique a power ground short in the control section
(which had been causing some very strange simulation results!) and several short
breaks in RAM bit lines were detected. The bit line breaks are a good example of
the limitations of graphical editors: it is often hard to see that a wire is broken for
a short distance when it is passing over other circuitry e.g. a light purple metal
2 bit line will not show up well over a blue metal one wire and a red and brown

shaded p-type transistor. Net list checks are the best way of detecting such errors.

The geometrical correctness of the design was verified using MAGIC’s on line
design rule checker. This was one of the most useful facilities in the MAGIC suite

and saved a lot of the time spent staring at plots in the previous 4um design.

5.1.4 Testing the CAL.

Failure Modes. There are three basic areas in whiéh a CAL could fail: the

cell routing area, the RAM cells and the peripheral circuitry. Well over half the
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Figure 5—2: Testing: Initial Cell Configuration.

transistors in a CAL are in RAM cells so this will be the most common failure
area. If a failure occurs in a RAM cell it is very likely to affect either a bit or a
word line, failures which affect these signals will wipe out a whole row or column
of RAM cells. Failures in the cell wiring area will usually have no effects outside of
that cell, except that neighbouring cells may receive erroneous inputs. Failures in
the peripheral circuitry could easily knock out either the whole chip or very large

sections of it.

Test Algorithm. We will assume that we wish to detect if a chip contains any
faults so that it can be discarded rather than locate a given faulty cell to allow

row and column replacement. The following procedure could be adopted.

1. Test the RAM. There are many published algorithms for testing RAM’s; one
of the best known is the Algorithmic Test Sequence (ATS) algorithm [Knaizuk77].

This test can be expected to detect most faults.

2. Initial Configuration. Configure the array so that all signals pass straight
through (figure 5-2). Start at the bottom left and test each cell in turn until
you reach the top right.

3. Cell Test. The test for each cell seeks to exercise all configurations of each
multiplexor. Since all the other cells in the array are routing ‘straight-
through’ changes in the current cells outputs are visible at the edge of the
array (faults in intermediate cells between the current cell and the edge of
the chip could force the current cell test to fail - this is not important since

we are only interested in the presence, not the location, of faults on the

chip).
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(a) North Test. S,W,E select N. Toggle North input to array and check
that S,W,E respond if not discard chip.

(b) South Test. N,W,E select S. Repeat.
(c) East Test. N,S,W select E. Repeat.
(d) West Test. N,S,E, select W. Repeat.

(e) X1 Test. N,S,W,E=F. Function=X1. FTEST=TRUE, X1 selects N,S,E,W,
G1,G2 in turn toggle inputs, check outputs respond, check FTEST re-

sponds.
(f) X2 Test. X2 selects N,S,E,W in turn.

(g) Function Test. X1 selects N,X2 selects S: check all functions in turn for

all input permutations 00,01,10,11. Check latch - needs more vectors.

(h) Finish. N selects S, E selects W, W selects E, S selects N. Ftest=FALSE.
Next cell.

The procedure outlined above is far from optimal in terms of number of test
vectors which must be applied. More complex testing protocols which take advan-
tage of the fact that many cell multiplexors can be tested at the same time could

easily be developed.

5.1.5 Fault Tolerance.

In this section we will briefly discuss the CAL design with reference to fault toler-
ance. The main motivation for this section is that cellular array designs are often

associated with fault tolerant computing.

The first two failure modes mentioned above can be treated to some extent
by providing an extra row and column of cells on the chip. If a single cell failed '
then the row and column it was in could be configured out of the array and the
spare row and column added. This would provide some protection from single
defects and may be worth considering: the economics of this approach are very

process spéciﬁc. Note that if the fault was in a RAM cell and it caused failure of
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all cells on a bit or word line then it would be impossible to program the other
cells in the row (or column) to route ‘straight across’ the faulty row or column
so this technique would not work. The present CAL design was designed for area
efficiency not fault tolerance: if fault tolerance was seen as an important goal
then shift register control store and extra connectivity to cells on a hexagonal or
octagonal grid should be considered (see [Lee86] for a discussion of how to design

fault tolerant arrays using these extra connections).

5.2 CLA Implementation.

The Configurable Logic Array [Kean87] is a mask programmable version of the
cellular architecture: the original idea of a mask programmed variant of Config-
urable Logic and the original function block design are due to Genbao Feng. The
implementation of this system predates many of the design decisions described in
earlier chapters. In particular the implementation of the basic function block is
not optimal (although the same functions are provided) and the global signals are
not available. There are no fundamental reasons why the system could not be

updated to include these features. The cell designs described here were done in

4um p-well CMOS rather than the 2um n-well CMOS of the CAL chip.

Experience with the CLA system has shown that while it can compete with
single mask change gate arrays in terms of density it is not significantly better.
Gate array systems are highly developed and have many man years of investment in
software tools and, therefore, it does not seem worth developing the CLA further.
This decision is reinforced by a change in philosophy: originally it was intended
that designs would be done using cell based tools then prototyped using CAL’s
and implemented using CLA’s. The present system envisages designs being done
at a high level in terms of logic blocks and interconnections: tools would then be
provided to produce cellular implementations which could be tested using CAL'’s.

Existing silicon compilers could then be used to produce implementations of the
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Figure 5—3: Basic Block Circuit Diagram.

higher level designs. The reasons for this change in philosophy will be discussed

in more detail in Chapter 6.

5.2.1 Basic Design.

The basic function block is based on an NMOS design in [{Chen82] (Figure 5-3 a).
This was converted to CMOS (Figure 5-3 b). The original programming table is
given as Table 5-2.

Input Inverter. Some of the functions in the programming table require the
complementary form of one of the input signals (X3). In a practical implementa-
tion these functions will either require two cells (one to act as an inverter) or an
extra inverter must be added within the basic cell itself. The design goals of the
CLA are best served by adding an extra inverter. It is likely that in most user
systems using these cells this will also save area since a single inverter is much
smaller than a four transistor function unit with its associated routing area. Note
~ that if the function units were used in a gate array layout with separate wiring

channels it might well be better to use two function units.

Output Inverter. Although this new design can perform all the functions of

two boolean variables it has some electrical problems. Functions where ¥; = 1,
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Number. | Function | Y; | Y, | Y3
0 ZERO |[X|0 |1
1 ONE |X |1 |0
2 X, X |1 |1
3 X X, (0 |o
4 X, Xi| X2 | Xz
) X: X | X, | X
6 XX, | XX, |1
7 X, X | X | X2)1
8 XX, | X0 | X,
9 X, X, | Xi|0 | X,
10 Hi+X | X |1 | X,
11 Xi+X 1 X, |1 | X,
12 X1+ X, [ X1 X2 |0
13 Xi+X [ X | Xz |0
14 Xi0X X | XX
15 Xi9X, | X; | Xo | X,

Table 5—2: Original Programming Table.

140
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Figure 5-4: New Cell Circuit Diagram.

Y = 1,Y; = X (eg. ONE) involve transmitting high voltages through M4
(figure 5-3 b) which will degrade the output voltage by V7. Another problem
is that functions with the input condition ¥; = 1, Y3 = 0, Y3 = 1 (for example
X1X, with X; = 1, X, = 0 ) rely on contention between M3 and M4. This
is not a problem when the current comes from the extra (input) inverter but it
is serious when it comes directly from a cell input. The combination of a cell
with a degraded output voltage driving several cells which rely on contention
could cause failure. Therefore, an extra inverter was added to buffer the cell’s
output. This inverter has wider transistors than those in the function block which
increases the cell’s output driving capability. At this time the basic four transistor
block was changed to a four terminal version from the original three terminal
version. This allowed some functions which previously relied on contention to be
performed under normal CMOS working conditions. Previous work in this area
has sought to find circuits which minimise the number of input terminals required
and would consider an extra terminal to be a major deficiency, however it caused
no penalty in our layout since the extra via (contact between first and second
layers of metal) could be placed in the area between the edge of the p-well and
the p-type transistors which would otherwise have had to be left empty.

From the new programming table (Table 5-3) it can be seen that two of the
possible combinational logic functions in the present cell draw current from the

X, input.' The first X; + X, can always be avoided by swapping X; and X,
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Number. | Function | T1 T2 T3 T4 QOutput
0 ZERO 0 X 0 X FBAR
1 ONE 1 0 0 0 FBAR
2 X 0 X X4 0 FBAR
3 X: 0 X X, 0 F
4 X, X, 0 0 X FBAR
5 X2 X, 0 0 X F
6 X1 X, 0 X X1 X, FBAR
7 X X3 0 X X3 X, FBAR
8 XX, | Xz 0 Xy 0 F
9 X X; | X, 0 X, 0 F
10 Xi+X, | X; 0 X, F
11 Xi+X; | Xz 0 Xi 0 F
12 Xi+X, |1 X, X, X, F
13 Xi+X: |1 X1 X, X, F
*13 Xi+X: | X, X, X, 0 F
14 X190 X, | X, X, X, X, F
15 XX, | X, X, X, X, F
16 D Latch |Q X,=CLK | X;=CLK | X,=D|F
17 RS Latch | R=X, | Q Q S=X, |F

( X = Don’t care.)

Table 5—3: New Programming Table.
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Figure 5-5: D Latch Circuit Diagram.

using the cell’s internal routing and using X; + X, instead. The other function
X1 + X, can usually be worked around in practice, for example, by using X1 X
and changing the logic functions of the cells connected to this cell’s output to
use the complemented signal. This final problem could be eliminated by using
the connection marked * in the table - this was not used because it would have

required additional routing area within the cell.

Latch Function. The additional output inverter has an important side effect
- it allows static latches to be built within one cell. There are several ways of
building latches but we will describe only D latches here since they can also be
used with the scan-path circuitry described below. The circuit diagram is given

as Figure 5-5. Note that the extra inverter is essential to allow positive feedback.

This latch design relies on contention and will draw current from its clock
input in the state D=1 (D = 0), CLK =1, @ = 1. The contention imposes a
design constraint on the user: no more than ten cell inputs which sink current may
be connected to a cell output (the figure ten comes from SPICE simulation and
allows a large safety margin - it is highly dependent on process parameters and
could be improved by changing the length and width of the transistors involved in
contention). This constraint is important since it is common practice to connect
large numbers of clock inputs to a common clock line - extra cells may be required

as clock buffers.
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5.2.2 Final Design

The cell was designed in double metal p-well CMOS to lambda rules using A=2um
(4pm technology) it was 140 by 132 um. These design rules are extremely con-
servative. The layout was done using the ILAP design system [Hughes82] and
the QV layout editor [Kean86] and is shown in figure 5-6. In this design power
must be distributed on metal 1 since metal 2 is reserved for personalisation: this
is unfortunate since the resistance of metal 1 is about 3 times higher than that
of metal 2 and the electronmigration limit is correspondingly lower. This is not a
problem in 4um technology (since the design rules force wide metal lines anyway)

but would cause an area overhead in a more modern process.

5.2.3 Scan Path Cell

This version of the cell has the capability to link any latch in the user’s design
into a scan path to improve testability [McCluskey85b,McCluskey85a]. To make
use of this functionality users must design their circuits as combinational logic
blocks separated by latches. These latches then provide for controllability and
observability of the combinational logic via the scan path. Test patterns can be

generated automatically using well known algorithms such as [Roth67].

The extra functionality is provided by 5 additional transistors as shown in
Figure 5-7. Although the number of transistors is increased from 8 to 13 the new
cell is only 162 by 132 um an area increase of about 15%. This low overhead is
possible since the testability circuitry makes use of previously wasted space under
the metal 2 routing wires and uses polysilicon wires for the associated global clock
and control signals. The tradeoff is of performance against area - performance can

be sacrificed because testability circuits will only be used once.

A version of the scan path cell designed to commercial 2um rules on a 0.5um
grid was 96um by 85um or 38% of the lambda rule design area. The metal 2
rules which are the determining factor in this design did not scale as well as the

polysilicon and diffusion rules resulting in a less than expected size reduction.
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Figure 5-7: Scan Path Cell Circuit Diagram.

Another factor was the decision to use approximately the same width of metal 1

power and ground rails to allow for large arrays of cells.

There are 3 new signals associated with this function (in this discussion we
assume that the cell is a latch cell on the scan path, other cells will connect scan-

in directly to scan-out using metal 2 personalisation):

Test/Normal - When this signal is low the test circuitry is disabled and the cell
functions as a DLATCH using the user clock and user data inputs. When
this signal is high the cell implements a D flip-flop. The D input comes

from scan-in and the Q output goes to scan-out. The flip-flop is clocked by
ShiftClock.

ShiftClock - This clocks data through the shift register built from D flip-flops
in the test mode. When ShiftClock is low the master latch is loaded and
when shiftclock is high the slave latch is loaded. Note that the master latch

is dynamic whereas the slave latch is static.

ScanlIn - This signal comes from the Q output of the previous D flip-flop in the
scan path chain. The Scanln input of the first flip-flop and the output of
the last are taken off chip.

The extra pass transistors (particularly the p-n combination on Scanln con-

siderably complicate the electrical design of the cell and must be sized to avoid



Chapter 5. Specific VLSI Implementations. 147

excessive degradation of signal voltages on clock input lines due to contention

within the function block.

5.2.4 CLA Personalisation.

Given the basic function block described above we must personalise it using metal
2 connections overlayed on the basic design in figure 5-6 to obtain the desired
function and routing permutation. All of the routing permutations provided by
the multiplexors in figure 3-9 (except the global signals) must be available. This
is done by separating the routing areas into non-overlapping ‘tiles’ of metal 2,
the CAD software described in Chapter 6 selects which tiles are necessary to
implement a given set of connections. The tilings were done as leaf cell layouts
using QV (treating each tile as a symbol) and the editor output files were converted
automatically into a form which could be included in the CAD programs. This
approach makes it easy to change processes since there are no process dependent

parameters within the human written part of the software.

Function Block Personalisation. The tiles shown in Figure 5-8 are respon-
sible for implementing the logic function given the appropriate inputs on the X1
and X2 vias. The output is made available on the Y1 via if the output inverter
is not used (F functions in table 5-3) or the Y2 via (for F functions). The X3
via can be used to input X1 allowing additional functions such as RS latch to
be implemented. The T1,T2,T3 and T4 vias are the terminals of the basic block
described above (Figure 5-4): the Vy and V,, vias provide logic ones and zeros as
required (Table 5-3). Since there are only a few functions the CAD software uses
a look up table to determine which tiles must be used. Tiles F50, F51,F52 and
Y3 are always used, they are connected to Y1 or Y2 as appropriate to allow the
routing software easy access to the function output without knowing which of the

Y1 and Y2 outputs was used.

Routing Personalisation. The routing of the present cell is shown below (Fig-

ure 5-9). The tiles whose names begin with ‘R’ are the metal 2 routing tiles and
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tiles starting with ‘P’ are dummy tiles to mark input and output ports: all the
rest are via's. Tiles whose names start with ‘V’ connect to metal one ‘bridges’
under routing wires. The ‘X’ tiles are function block inputs and the Y’ tiles func-
tion block outputs. Two tiles with the same name are electrically connected by a
metal 1 bridge. The CAD software (Chapter 6) selects which of the routing tiles
are necessary to provide a given configuration. The layout of this routing area
to allow all legal input output permutations without having wasted tiles was the

most time consuming part of the cell design.

At present routing area dominates the cell size. This is because of the rich
routing possibilities provided and the relatively poor width and separation rules

for metal 2.

5.2.5 Useful Techniques.

Although the CLA itself is not considered to be worth pursuing further some of the
techniques used in it are of interest: in particular the use of pass transistor logic to
obtain efficient implementations of fairly general functional units. The transistor
count for a latch implemented using this technique is less than half that of one
in a gate array library. If one is prepared to use p-type pass transistors (this is
acceptable provided buffering is placed immediately after them) then a very area
intensive layout is possible (figure 5-10). This design works because (as we saw in
Chapter 3) all functions of two boolean variables can be computed using a three
input multiplexor with appropriate values on its terminals (table 3-1). The mask
level layout for a multiplexor using p-type pass transistors is almost identical to
that of an inverter so an array can easily be customised using metal connections to
make a given stage either a multiplexor (on the left of figure 5-10) or an inverter

(on the right).

Extra inverters for producing X, will only be provided when necessary rather
than in every ‘cell’ unit as in the present case. Simple transformations on a user’s
design at the gate level could reduce the number of functions which required

input inversion. CAD software could also share the inverted form of an input
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Figure 5-9: Routing Tiles.
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Similarly, CAD tools could be developed which, based on a set of connection rules,
would only add output buffers for level compensation where absolutely necessary
(many low fan-out local signals would not require it). Using this optimisation
functions like AND, which would normally require 6 transistors (a four transistor
NAND gate and an inverter) could often be implemented with 2, and even if an

output inverter was used only 4.

There are some problems with this technique: in particular the noise immunity
is lower than that of complementary logic. In many applications this may not be

critical and the area advantages are considerable.
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5.3 Wafer Scale Version.

This section will consider methods of mapping the dynamically programmable
version of the architecture into Wafer Scale Integration (WSI). There are several

reasons for looking at wafer scale versions of this architecture [Moore85].

1. I/O Bottleneck. As we have seen in previous sections the VLSI CAL design
is pad limited: that is the size of array which can be used is determined not
by area limitations but by the number of package pins available. With wafer
scale integration between-chip wires are around the same width as on chip
wires so the bottleneck disappears. There is also the speed limitation caused
by the pad drivers: this is not significant with the current configurable logic

architecture but could be important in a pipelined system (section 2.4).

2. Pad Cost. A design with a large number of I/O pads incurs two important
penalties: firstly because of the size of the driver transistors, bonding pads
and protection structures there is a large area overhead caused by the pad
ring (1.5mm in X and Y would be a good estimate). The pads also have a

potential power consumption as great as that of the array.

3. System Costs. Wafer Scale Integrated systems have the potential to cut
dramatically system costs and physical volume by eliminating the need to

dice and package individual chips and solder them on a board.

4. Regularity. At first glance this architecture seems very suitable for WSI

because there is only a single, easily tested component.

The hope is that a WSI version of the CAL architecture would gain enough advan-
tage from these factors to offset the large area overhead over statically configured

circuits.
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Figure 5-11: Silicon Wafer.

5.3.1 Design Overview.

The basic WSI configurable logic system would consist of a large number of chip
level units on a wafer (figure 5~11). Many of these chips will be faulty. (It is not
possible just to design a huge wafer sized chip because there are too many global
row and column signals in a RAM. Faults affecting any of these signals would
cause a whole row or column of cells to fail. Such faults are almost certain to
occur in every row and column so the yield of the wafer would be almost zero).
The problem is to build an array of chips containing as many of the good chips on
the wafer as possible and none of the faulty chips. Ideally one would like all the
good chips to be used: this is the situation in normal VLSI technology.

Given this scenario the first question is what size of chip unit to use. There

are four important factors to be considered.

1. Unit ‘Yield. The larger the unit chip the more likely it is to fail. Also, a
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single fault causes a whole unit to be lost so the area lost per fault is higher

with large units.

2. Reconfiguration. If large units are used then there will be fewer units per
wafer. Since there are fewer units there will be fewer faulty chips: this means
that less reconfiguration circuitry will be required. The number of wires in
the reconfiguration circuitry remains constant (because the wiring paths for
the larger units are wider) but the control overhead is dependent only on

the number of logical switches - not on the number of wires being switched.

Large amounts of reconfiguration circuitry themselves affect the wafer yield
to some extent (the reconfiguration areas are nearly all wiring channels and
the wires are often wider and separated more than wires within the chip
units: so the yield of the reconfiguration circuits is substantially higher than

that of the units themselves).

3. Chip Efficiency. The area of a CAL is (0, + zc;)(0y + ycy) where o, and
o, are the width and height of peripheral overhead circuitry in the X and
Y directions z and y are the number of cells in X and Y and ¢, and ¢, are
the cell dimensions. This implies that the ratio of chip area to cell area
is maximised in a large chip. There is, of course, a maximum array size
imposed by wire length constraints in the unit design; we will take this as

64 x 64 cells in 1um technology.

4. Ease of Design. It would be useful if the basic unit was a ‘nice’ size e.g.
16 x 16 cells (because of simplifications in functions like address decoding
and user interface) and even better if the same design used for board level

chips could be used for wafer scale chips by simply removing the pads.

Before we can proceed any further we need to make some assumptions about
how yields vary with unit size. T'wo excellent references on yield models are [Stapper83],
[Stapper84]: here we will use a simpler model derived from this work based

on [Turnbull85], [Fourman85]. The reason for using a simple model is that it
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allows realistic computations to be done using pencil and paper with public do-
main information: the more complex models require special CAD programs and
detailed information about a particular process. The general form of the yield
equation is Y = Yye(~f4D) where Y; is the yield of pinholes and vias which is
taken as constant at 80%, A is the area of the device and D is the defect den-
sity (we will use two values of D in this analysis 0.02mm =2 and 0.01lmm=? the
first corresponds to current practice and the second to the near future), f is a
modifier to take account of the fact that not every processing defect causes func-
tional failure (this is more important for areas like wiring channels where only
some masks are significant and we will take f = 1). We must also consider the
size of wafer to use: we choose 10cm wafers and assume 64cm? of usable area
after [Fourman85]. One should note that other authors have considered different
sized wafers e.g. 15cm wafers with 132cm? of usable area in [Turnbull85): direct
comparison of WSI system complexity can therefore be misleading. We have also
assumed 1um processing technology resulting in a factor of 1.5 improvement in
the X and Y dimensions of the 2um CAL design: 1.2um processing for ASIC’s is
already commonplace. Table 5-4 shows projected yields assuming 100% harvest
of working chips for different sizes of chip unit. The working sites per wafer figure
is the number of sites working at 96% confidence, not the expected number of

working sites.

From this table we can see that if good harvest can be obtained (i.e. most
working chips can be used) it should be possible to get a 217 = 131072 cell wafer
scale CAL at reasonable yields using 16 X 16 cell units.

5.3.2 Reconfiguration Methods.

In this section we will look at several possible ways of building good arrays from

larger ones with faulty cells.

Use Cell Interconnect. The cells themselves provide a general switching sys-

tem so it is worth looking at an architecture which connects all the chips on the
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Array Size | Yield | Sites per Wafer. | Working Sites | Working Cells
D=0.1

16x16 0.79 | 650 505 129280

32x32 0.77 | 162 120 122880

64x64 0.68 | 40 24 98304

D=0.2

16x16 0.78 | 650 498 127488

32x32 0.73 | 162 102 104448

64x64 0.58 |40 20 81920

Table 5~4: Projected WSI CAL yields.

wafer up into one huge array and uses the cell’s switching capabilities to avoid

defective areas.

All rows and columns in the array which contain faulty cells must be configured
out (by arranging for all the working cells in them to route straight across the faulty
row or column). This could be done either at the chip level, removing faulty rows
and columns of chips or we could take advantage of partially functioning chips
and do it at the cell level. Let us imagine the 650 chip array as having 26 columns
of 25 chips (the actual situation is more complex because wafers are circular).
The chance of a column containing all correct cells is p* = 0.79?¢ = 0.002. This
means that there would be no yield. Things are no better in the single cell case
since although p is higher (it is hard to say how much higher since a fault in one

cell can affect all the others on the same RAM bit or word line) we now have
p(16x26) — p16

Use a special Structure. The embedding of grids of processing elements in
switching structures to allow fault tolerance has been studied for many years
[Manning77]. Although there are a number of algorithms for embedding strings in

grids with good harvest [Manning77,Catt78,Lea85a], embedding grids in grids is
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Figure 5-12: Building Good Arrays From Bad.

a much harder problem. Formal analysis suggests that hierarchical tree like struc-
tures are necessary as the number of devices gets large [Leiserson85,Jesshope85).
This analysis is predicated on delay scaling with wire length in the reconfigura-
tion structure: this is not as significant if different fabrication techniques are used
for wafer sized wires. Simulations [Negrini86], [Lee86] have shown that if addi-
tional (not nearest neighbour grid) connections to allow substitution are provided
then good harvests can be achieved in reasonable size arrays. The problem is the
amount of wiring between the chip sized units: to get good harvest it is necessary
to be able to perform many different reconfigurations (figure 5-12). This reéults
in large wiring channels: in [Negrini86] there are 6 logical connections between
cells in the vertical direction and 7 in the horizontal direction. Each of these

connections represents 32 wires (16 inputs and 16 outputs).

We take the wire pitch as 5um, this is larger than normal for 1um processing
since we wish to ensure very high yield. This implies that in a 25 by 26 cell array
about 5% (16 +16) x 7 x 25 = 28000pum = 2.8¢m will be used up in the Y direction
and 2.4cm in X. The area remaining for chips is (8 — 2.8)(8 — 2.4) = 29.12cm? or
45% of the usable area on the wafer. The wiring area could be reduced by using
the same sort of multiplexing scheme recommended for pad sharing: perhaps by
a factor of two in each direction: in this case 68% of the wafer area could be used
for chips. It should be noted that this overhead is not a CAL specific problem:
any wafer scale system with wide nearest neighbour grid connections - including
many of the systolic algorithms proposed in the literature - would have the same

trouble.
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5.3.3 Implementation of Reconfiguration System.

At this point we must consider the implementation of the chosen reconfiguration

system: there are two main approaches currently under investigation.

5.3.4 Normal Processing

In this approach no special processing capabilities are used for the reconfiguration
circuitry. Reconfiguration is provided by transistor switches. Perhaps the best
example of systems designed using this approach is the Brunel WSI Associative
String Processor (WASP) [Lea85a]. This approach has two main advantages:

1. Availability. The technology for doing this kind of design is readily available.

2. Cost. Since no special processing is involved this is the poor man’s way to
Wafer Scale Integration. In terms of volume production of wafer designs it
also has advantages: wafer specific processing could well be a bottleneck in

a production environment.

There are, however, three very important problems with using standard pro-

cessing technology:

1. Propagation Delays. The wiring necessary to avoid faulty subsystems on a
wafer is necessarily long: possibly several centimetres. The characteristics
of wires fabricated using normal VLSI technology are not ideal for wires of

this length.

2. Power Routing. There are two problems here.

(a) Switching. Active devices héve too high an impedance in the ON state
to be used to switch power lines. This means that faulty subunits must
be left connected to the power grid. Power ground shorts and other
failures which result in excessive power consumption in subunits can-

not be ruled out. It must be remembered that the power and ground
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nets are the longest in the design and that other mechanisms (e.g.
latchup [Glasser85]) apart from metal shorts can cause high power-
ground currents in CMOS. In an array structure it is not inconceivable
that a ‘data’ wire might short to a power line in one place and a ground
line in another. A power ground short in any subunit could render the
whole wafer unusable. Supplying power to faulty and unused units as
well as good units will significantly increase the wafer’s power consump-

tion even if there are no shorts present.

Area. The metallization on current VLSI technologies was never de-
signed to handle the sort of currents involved in supplying whole wafers
of chips. Each chip may require as much as 50 to 100mA if the ap-
plication is highly concurrent. Attempting to supply the current using
standard metallization results in having a large grid of wires each of
which is several hundred microns wide. The WASP chip {Lea85b] used
a grid of wires 700pum wide in metal 1 in the X direction and 200um
wide in metal 2 in Y. If we assume the same size of tracks in our system
we would get overheads of 25 X 700 = 1.7cm and 26 x 200 = 5.2mm;
this would use up 27% of the silicon area. Obviously the figures would
be different for Configurable Logic but this approximation is enough to
suggest that we look for a better approach.

5.3.5 Special Processing.

This strategy uses extra processing steps after testing of ‘chip’ size subunits on

the wafer to allow a good system to be built. This could be done either by

patterning additional layers using electron beam machines [Steinvorth85] or by

using laser programmable links [Raffel85]. This approach can tackle both the

signal propagation and the power distribution problems.

1. Signal Propagation. The signal propagation problems in normal VLSI de-

vices are caused by the thin silicon dioxide dielectric. If a special polyimide

dielectric is used with an intervening ground plane between silicon and the
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VLSI WSI

Wire Length (cm) 5 20 |5 5 |20
Wire Width (um) 3 3 |5 10 |10
Wire Sep. (um) 3 3 |5 15 |15
Wire Thickness (um) 0.5 0.5 | .75 5 138
Dielectric Thickness (um) | 0.5 0.5 |1 5 |5
Dielectric S10, Polyimide
Propagation Delay (ns) 15 240 | 5.2 0.3]1.2

Table 5—5: WSI Interconnect Delays.

wiring planes then the interconnect delay can be dramatically reduced. Ta-
ble 5-5 shows figures taken from [Steinvorth85]. This microtransmission line
interconnect with delays even for long distances of the same order as that
through a single CMOS inverter has major implications for the conventional

wisdom on systems realisable using VLSI/WSI.

. Power. Even if no other special processing is used it makes sense to use
a third metal layer for power wires. This should not be technically diffi-
cult because these wires are necessarily wide and thickness is an advantage.
Distribution of power on a third metal layer in large gate arrays is now com-
monplace. It is also useful to have the ability to make and break power
connections at the wafer level after testing either by using connections to

special power planes as in [Steinvorth83) or by laser cuts and welds on a

predefined power grid as in [Raffel85].

These techniques have four major problems.

1. Individual Attention. Since the final processing steps depend on where faulty

chips occurred they are wafer specific. Much of the efficiency of VLSI pro-
cessing stems from the fact that all the chips are identical allowing batch
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production techniques. The final customisation could easily become a bot-

tleneck in situations where large numbers of wafers were being produced.

2. Yield of Reconfiguration Circuitry. It is very important that the extra re-
configuration circuitry is reliable. If this circuitry fails then the whole wafer
is lost irretrievably after comsiderable investment in testing the individual
chips. This implies that there must either be redundancy in the reconfigu-

ration circuits or an extremely high yield.

3. Infant Mortality. This refers to wafers where components fail shortly after
the initial test. When irreversible additional processing is used to configure
the wafer there is no way of recovering from failures caused by infant mor-
tality. The additional processing steps can themselves be expected to stress
the tested components. It is not clear yet how serious this problem will be:
it may be that an extended ‘burn-in’ will be necessary before final configu-
ration. Note that this would only affect the latency, not the throughput, of

a wafer production line.

4. Cost. Extra processing stages inevitably mean that the cost of producing
a wafer is increased. However, the situation is slightly more complex since
extra wiring layers allow more circuitry to be put on each wafer so in a
given system fewer wafers may be required. Additional processing may also
increase yield by allowing better reconfiguration structures to be used so

fewer wafers have to be manufactured to get a given number of good ones.

5.3.6 Technology Choice.

Since there was never any intention of actually building a Configurable Logic wafer,
only of investigating the feasibility of such a design it makes sense to assume the
availability of special processing technology where this could significantly sim-
plify the design process. Attempts to design wafer scale systems using completely
standard CMOS processing technology are setting themselves unnecessarily hard

problems.



Chapter 5. Specific VLSI Implementations. 163

Even if one does not want to use wafer specific processing it will be helpful to
use a process with additional metal layers. This is not a particularly challenging
processing problem because the pitch and thickness of the additional layers can
be larger than those of the standard VLSI interconnects. Additional wiring layers
have two important benefits: firstly they greatly simplify the power distribution
problem and secondly they allow wafer level signals to be routed over the top rather
than round the edge of chip level blocks. As we have seen extra wiring channels
to support reconfigurability could cost half the silicon area of the wafer. Power
supply routing could cost 25%. The analysis is not complete but it is clear that
without additional wiring layers the number of chips per wafer will be reduced
by about a factor of three: with additional wiring layers the power supply and
reconfiguration wiring will cause very little overhead (since it can be done above
the functional circuits). The need for additional interconnect layers in wafer scale
systems is not surprising: after all conventional technology uses the tracks of the

printed circuit board to provide the same sort of functions.

Given additional interconnect layers the architecture could be implemented
using any of the reconfiguration strategies mentioned above, dynamic reconfigura-
tion, laser cutting and welding or discretionary wiring. Of these the method which

presents the best interface to the designer is discretionary micro-transmission lines.

It is important to note that although extra metal layers will be required wafer-
specific processing is not. The only area where wafer specific processing would
be useful is breaking power supply lines to faulty chips. This can be done very
quickly using a laser: we only require a few hundred cuts per wafer (rather than
the hundreds of thousands or millions to pattern a whole mask) so this need not

be a bottleneck in a production environment.
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5.4 Summary.

The 16x16 CAL array prototype chip covered in this chapter illustrates the vi-
ability of the configurable logic architecture. Much larger arrays are possible in
a commercial device by increasing the silicon area and taking advantage of bet-
ter processing technology: 64x64 cell arrays should be possible with leading-edge
technology.

The CLA device where the cellular structure is mapped into an array pro-
grammed by a single mask being changed was covered. This implementation is
competitive with traditional gate arrays in which only a single mask is changed.
Much of the advantage comes from the much more general function block. It is
not considered that this architecture is viable commercially given the huge invest-
ment in tools for traditional gate arrays, however it is possible that large density
improvements could be made in such gate arrays by changing to a more powerful

basic function block.

The wafer scale integrated version of the CAL technology promises a huge
number of configurable cells. Like previous attempts at wafer scale integrated
designs what appeared at first to be straightforward turned out to have many hid-
den costs. Perhaps the most surprising result is that extra interconnect layers are
much more useful than wafer specific processing for a WSI CAL implementation.
Such units could be used as coprocessors within workstations for specific problems.
It is unclear whether Wafer Scale Integrated versions of the architecture can offer
sufficient improvement over VLSI versions with state of the art packaging to make

the extra processing required cost effective.



Chapter 6

CAD Tools for Configurable Logic.

This chapter will discuss Computer Aided Design tools for Configurable Logic.
There are three main topics: a discussion of the applications of CAL’s and the
CAD tools required for each of them, a discussion of datastructures for representing
CAL arrays and discussion of important silicon CAD tools and how to convert
them for cellular systems. The tools developed during the course of this project

are also covered.

6.1 Applications of Configurable Logic.

Three main applications of Configurable Logic were identified in Chapter 1. In

this section we will discuss their distinctive CAD requirements.

6.1.1 EPLD Replacement.

In this application designs will normally have to fit on a single CAL chip. This
means that the design size will be small enough to allow manual design optimi-
sation and that efficiency is of paramount importance. This application requires
very low level tools analogous to VLSI mask level editors, or assemblers on a

conventional computer allowing complete control of the cellular structure.

165
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Subsidiary tools such as simulators and schematic editors are also important.
A good example of this kind of environment is that provided by XILINX for their
LCA product {Xilinx86].

6.1.2 ASIC Prototyping.

One of the major goals of the configurable logic system is to provide a prototyping
capability for ASIC’s. This has major implications for the design of CAD software
since it is desirable that a system be implemented which can convert a single
source format efficiently into either a silicon or a cellular implementation. The
tools required for this are dependent to a large extent on the design style of the
silicon implementation. There are two main approaches to this problem: either
one designs a cell based system with a back end which can generate silicon or one

attempts to build support for CAL into an existing silicon system.

Cell Based System. The main advantage of a cell based system such as the
Configurable Logic Array (CLA) discussed in Chapter 5 is the direct one to one
correspondence between the design emulated by the CAL and the final silicon
implementation. This gives a very high probability of success on first silicon and
provides a smooth migration for CAL EPLD designs into ASIC’s. Since the CLA
system need only involve a single mask change it can provide low cost and fast
turnaround for relatively low density designs. Gate net lists can also be extracted
from the CAL design and used as input to silicon compilers for higher density
ASIC’s where all the masks are changed.

This approach has several drawbacks:

1. Efficiency in Silicon Layout. Efficiency in the utilisation of silicon area in full
custom designs is dependent on making use of special array structures such
as PLA’s, RAM’s and ROM’s. By the time a design has been reduced to the
cellular format the information necessary to make use of these structures is
no longer present. To make use of such structures the cellular and silicon

design processes would have to be separated at a functional rather than a
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structural specification level. A direct correspondence between cellular and
silicon implementations also prevents the use of many other important circuit

technique within the silicon design.

2. CAD System Complexity. Many important and difficult CAD problems (no-
tably behavioural compilation, floorplanning and global routing) are speci-
fied almost identically for silicon and cellular designs. Implementations of
algorithms for these problems are available within existing silicon design au-
tomation system and have required many man years of development. Many
engineers are already familiar with silicon design automation systems. For
these reasons it makes more sense in terms both of functionality provided
to the user and ease of implementation to build support for configurable
logic into an existing silicon design automation system rather than produce

a completely new CAD system.

Silicon Based Systems. Here we are attempting to add CAL support to an
existing silicon design automation system. It is desirable that any legal design in
the silicon system can be emulated using the CAL, since any mismatch will cause
considerable inconvenience to users of the system. However, there are several

important areas where this cannot be achieved with the current CAL design:

1. Wired Logic. The CAL is a completely gate based system and the routing
network prevents gate outputs being connected together. Thus CAL can-
not emulate structures such as three-state, open drain and precharged buses
directly. Gate based silicon systems have trouble here as well: for exam-
ple MODEL ([Lattice86]) needs a special wired-or library part to get round
its normal checks on output connections when transmission gates are used.
Precharged and static open drain wires usually only occur in manual silicon
designs. Gate level simulation programs do not handle such structures well
either. It may appear that the design of the CAL should be changed to allow
three state lines: however (as was explained in Chapter 3) provision of bidi-

rectional lines would cause a large increase in the control store requirements.
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Note that the dynamic (precharged) CMOS logic families which are gaining
popularity can be emulated since the problem is with connecting multiple

gate outputs together rather than precharging per-se.

2. RAM’s and Register Files. Most silicon compilers have macros for these
functions in their library and many user designs take advantage of them.
Emulation of large stores cannot be done efficiently by the current CAL
architecture. A partial solution might be to allow the CAL control store to
be used as a memory within user designs on a per chip basis (i.e. a given
chip looks like a memory rather than a block of logic to other chips in the
system). Another solution would be to provide RAM chips connected into a
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board level switching system on an emulation product.

3. Analogue Parts. It is becoming fairly common for ASIC’s to include some
simple analogue functions such as operational amplifiers or analogue to dig-
ital converters: 6bviously a completely digital system such as CAL cannot

emulate such devices.
We will now consider CAD support for the more common silicon design styles.

o Gate Arrays. The first kind of design is the ‘gate-array’ or ‘cell-array’. The
floorplan of these devices is very simple and they are composed of macrocells
(normally all the same height) from a library. These macrocells are imple-
mented either as leaf cell designs or by custom metallization on an array of
two transistor stages. This design style is very suitable for ‘T'TL-like’ blocks

of random logic.

A very simple approach to emulating this style of design would be to man-
ually implement all the library functions as cell designs. Each unit would
be the same height and they would be composed in rows using exactly the
same placement as the silicon design. Row feed throughs can be handled
by adding columns of cells between library parts or using spare vertical
connections within the library parts. The rows of library cells could then be

connected using the channel router (described in section 6.8.1). This method
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would be extremely easy to implement and give the close correspondence be-
tween the silicon and cellular designs which is desirable in this application.
One drawback of this approach is that it would not be particularly efficient
in terms of cell utilisation. This could be improved by a final optimisation
phase but it may well turn out to be more convenient just to provide more

cells.

e Sea-Of-Gates. This design style differs from the gate array in that there is
no separation between wiring and logic areas: instead the whole chip area is
covered by a ‘sea’ of transistors which can be built up into gates or ignored
based on metal personalisation. The fact that wiring and functional areas
are not separated potentially allows better use of CAL resources (normally
cells in routing areas will not have their function units used). More complex,
placement and global routing algorithms are required for this structure than

the normal gate array.

o Full Custom ‘Mega-Cell’. In this design style chips are built up from large
library elements which could be RAM’s or standard microprocessors. The
ability to use familiar ‘catalogue’ components within silicon designs is a
major advantage to novice IC designers. Emulation of such systems using
CAL is problematic: a much better approach is to use board level prototypes
with the corresponding catalogue parts. CAL could be used to emulate the
extra blocks of random logic ‘glue’ which are normally required in these

designs.

Emulation Speed. Configurable structures are inherently slower than fixed
structures implemented in the same technology because of the additional switching
systems. Thus, in the general case one cannot expect real-time emulation of tar-
get systems. Many ASIC designs, however, run much slower than the technology
would allow. One important reason for this is that CMOS power consumption is
proportional to clock speed and many systems value low power consumption more

than speed. Another point is that CAL chips can be designed manually (because
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of their regular array structure) as catalogue devices with architectural support
from the processing technology (e.g. buried contacts for the RAM cells and special
high-conductance switching transistors). ASIC’s, on the other hand, normally use

‘lowest-common-denominator’ technology to allow a degree of process portability.

We would expect many ASIC designs to be emulable in real time and certainly
emulated much faster than simulation using traditional hardware accelerators. Of

course, CAL emulation is mainly a functional test and cannot give the detailed

6.1.3 Algorithm Implementation.

The difficulty of algorithm implementation using CAL depends to a large extent
on the complexity of the control flow within the algorithm. A large number of
‘cellular automata’ and ‘systolic’ algorithms are known for important problems
(see, for example, the bibliography in [Wolfram86]). These algorithms provide high
performance based on an array of relatively simple processing elements. Direct
implementation of these elements using CAL is often attractive. Normally these
cellular implementations would be carefully hand optimised because the basic unit

is simple and is repeated tens or hundreds of times.

Implementation of algorithms with more complex control flow or the need for
significant storage is more difficult. An attractive architecture for this application
is a normal microprocessor with a block of Configurable Logic acting as a copro-
cessor. Only speed critical ‘inner-loop’ code would be executed using configurable
logic. Clever ‘active’ compilers would detect suitable loops based on the simplicity
of the operations within them and high repetition counts. The structure of such
a compiler is discussed in more detail in the next section and an example of the
coprocessor architecture applied to an image processing problem is presented in

Chapter 7.
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6.2 Active Compilation.

In this section we will discuss the components of the software system required to
convert critical components of an algorithm written in a high level programming
language into a cellular implementation. Some of the ideas in this section are
taken from a paper written in conjunction with Viitanen [Viitanen88b]. The term
‘active-compiler’ was coined by Gray [Gray88] to describe the complete system -
it is ‘active’ because the result is the connection of active logic elements rather

than a passive byte stream to be interpreted by another unit.

Historically, many research projects have been carried out into behavioural
compilation for catalogue part and silicon designs, notably the work at Carnegie
Mellon University on the CMU-DA system and related projects [Thomas83]. Re-
cently, a highly developed system has been produced at IBM Yorktown Heights
[Brayton86b]: this system features novel multi-level logic synthesis techniques and
is probably the most fully engineered behavioural system available. We will model
our discussion after the IBM compiler and another interesting system from Linkop-

ing University [Peng88].

Figure 6 illustrates the proposed CAL program development process from high
level language source to configuration information. This diagram is typical of
most silicon behavioural compilation systems. The process is normally split into
two parts: in the first part the behavioural representation is converted into a
structural one (e.g. a hierarchical netlist of gates) and in the second (termed cell
assembly) the structural representation is converted into physical layout. Tools
for the second phase are fairly well understood so we will concentrate on the

behavioural compilation step and take each component of the diagram in turn.

6.2.1 Source Language.

The choice of source language is central to the active compilation system: there

are several schools of thought about the most desirable source language.
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Conventional Imperative Programming Languages. Use of a conventional
high-level language such as C is the most attractive choice from the user’s point of
view since it could potentially allow him to get the benefit of the CL accelerator
without making any changes to existing programs. This is the approgzh suggested
in [Viitanen88b], however it is impossible to make full use of the _ accelerator

using this method. There are several areas in which problems occur.

1. Word Length. One of the major efficiencies of programmable hardware im-
plementations arises from the fact that operational units need only be as wide
as required by the problem in hand. For example, in the image processing
problem of [Viitanen88b] (Chapter 7) five bit comparators are required, in
a C program to implement this algorithm the operands would probably be
specified as ‘int’ (16 bits) or ‘long’ (32 bits). The extra precision has no cost
in run time and negligible cost in space on a conventional processor but in a
CL implementation area and time would both be about 6 times greater for
a 32 bit comparator rather than a 5 bit comparator. The active compiler
when presented with C source would have no way of telling that the extra
27 bits were redundant. To get maximum efficiency from a CL implemen-
tation the source language must provide as much information as possible
about operand sizes as well as such factors as whether signed or unsigned
arithmetic is required and handling of overflow conditions. An example of
a high level language allowing this sort of information to be specified would
be ISPS (Instruction Set Processor) which was developed to describe the

instruction sets of conventional processors [Barbacci78].

2. Parallelism. Extraction of potential parallelism is central to use of config-
urable logic as a hardware accelerator. This can be done by simple data-flow
analysis of the code But there are problems: normally programs written in
imperative languages have little scope for parallelisation. One reason for
this is that algorithms which run efficiently on conventional computers get
no benefit from potential parallelism but can be speeded up by techniques

which reduce it - e.g. complex branching sequences to ‘special-case’ the
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computation performed. QOther techniques which produce speedups on con-
ventional computers such as the use of large lookup-tables to trade-off space
against time are also inappropriate on configurable logic. To get the max-
imum benefit from parallelism it must be considered at a high level when
the algorithm is being chosen: for example a C programmer might specify
a quicksort algorithm where a hardware implementation would be faster us-
ing a distributed bubblesort. It"‘f)ften impossible for a programmer to write

efficient code without knowing which processor it will run on.

Language with Explicit Concurrency. In this approach the language allows
the programmer to specify exactly which operations proceed in parallel. An ex-
ample of such a language would be OCCAM [Inmos84]. This technique makes
programming harder but will probably result in much more efficient compilation
since the programmer can use extra knowledge about the problem to determine
which parts run on the coprocessor. Use of OCCAM with transputer hosts and
a self-timed design style within the programmable blocks could result in a very
clean interface between the parts of the program running on the transputer and
those running on the configurable structure. If OCCAM was extended to include
extra information about operand sizing it would provide a very attractive source
language from the point of view of efficiency of CAL utilisation and ease of active

compiler implementation.

Functional Language. Use of functional languages for hardware description
has been éuggested because of the ease with which maximum parallelism can be
extracted from them and the perceived advantages of these languages. Functional
programs are normally written at a very high level with little or no concern for
efficiency and it would require very advanced software to translate them into rea-

sonable hardware implementations.
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6.2.2 Choice of Code Segments.

There are several important criteria on which the choice about which sections of

the code to run on the coprocessor will depend:

1. Simplicity. The section of code must be simple enough to fit on the con-
figurable logic array. Sections of code with complex decision structures are
less suitable than in-line code since, for efficiency, we must keep the control

section of the cellular implementation much smaller than the data-path.

2. Heavy Computation. There is no point in mapping a section of code onto the
configurable coprocessor unless it uses a great deal of computational effort.
An important reason for this is that loading the configuration information
into the coprocessor will be quite time consuming - we need enough speed
improvement to compensate for this overhead. Detection of code ‘hot-spots’
is normally impossible from static analysis of source code, a better approach
would be to make use of ‘profiling’ information taken from the algorithm

running on the conventional processor with normal input data.

3. I/0 Overhead. In an architecture in which all I/O from the coprocessor is
routed via the host processor there are many simple operations which would
run faster on the host than the I/O instructions to read and write data to
the coprocessor. This consideration puts a lower bound on the complexity
of coprocessor operations as well as the upper bound which comes from
the limited size of the CL array. If a separate path is provided between the
coprocessor and memory then the bottleneck is removed and we also have the

potential for parallel operation of the normal processor and the coprocessor.

4. Possible Speedup. There must be a reason to suppose that the CAL copro-
cessor will be able to offer a speedup for the given loop. The easiest way to
determine if a speedup is possible would be to implement all sections of code
which meet the first two criteria and calculate the expected performance.

Only those sections which showed a clear speedup would be implemented in
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the final code. This approach would involve a lot of redundant computa-
tion so it may be necessary to use some additional criteria to cut down the

number of sections considered.

With present technology, only loops or parts of loops with 20 to 30 instructions
and iteration counts over a few hundred would be considered for running on the

CAL coprocessor.

6.2.3 Synthesis Operations.

At this point we will assume that the program sections to be implemented on
CAL have been selected and that the source language has been compiled into an
intermediate data flow graph format representing the necessary precedence rela-
tions between the computations to be performed. Examples of such intermediate
forms are the Value-Trace (VT) in the CMU-DA system, Yorktown Intermediate
Format (YIF) in the Yorktown Silicon Compiler and Extended Timed Petri Nets
used in [Peng88]; the information encoded in these formats is essentially identical

so we will consider a generic Data Flow Graph (DFG) format in this discussion.

In order to obtain reasonably efficient hardware realisations it is necessary that
many operations in the data-flow graph be performed by a single physical unit.
Maximally parallel and minimally parallel implementations are normally equally
unacceptable: the key task is to trade off area against parallelism (and hence
speed) in a way which is appropriate for the current system. There are two steps
in figure é',- where this merging of operation can be done. The first comes, when
the sequential program is transformed to the DFG description. This utilises the
control structure of the DFG and compresses suitable ‘inline’ sections of the pro-
gram with no external data dependencies to single operational units. The second
merging step comes with the Boolean minimisation. Here, additions by a constant
and similar ALU-only operations can be merged with the following operation.
Programmable logic circuitry handles several variables at a time providing an-
other useful speedup over traditional processors. A third merging phase may also

be desirable where multiple units with data-dependancies are merged. Naturally,
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this reduces the amount of parallelism present and potentially reduces speed but
it can also drastically cut down the amount of hardware in the implementation
and the more compact unit could well be faster because of reduced routing delay.
This merging phase can be done by manual intervention (perhaps using graphical
tools to manipulate the DFG) or automatically using ‘expert’ systems or other

heuristic techniques.

The example in Chapter 7 of hardware to search for the minimum of five words
after adding a constant to each one is a good illustration of these optimisations.
Several comparison operations can be merged into a single Boolean expression
over all the five input words. The expression can be optimised at compilation
time and the resulting logic function can be assigned to CAL cells. The efficient
automatic realisation of such boolean expressions has only recently become feasible
with advances in multi-level logic synthesis techniques [Brayton86b,Gregory86]. A
sequential program for this operation would take at most two words at a time for
processing, and consume several cycles for each suboperation. A parallel processor
implementation would distribute partial comparisons to different processors and
thus introduce a major communication overhead. The CAL implementation is

clearly better than both the traditional sequential and the parallel approach.

6.2.4 Control Structure Realisation.

The control structure seeks to implement the DFG graph on the physical hard-
ware mapping instances of computations on the graph into computation slots on
physical units and routing the data to and from these units. Two implementation

styles are common:

1. Data-Path / Control Path. In this approach the classical processor architec-
ture of a data path controlled by a wide instruction word from a controller
is used. This model is relatively easy to understand and implement but has
two considerable disadvantages. Firstly, it does not cope well with multiple

state machine systems. Secondly, in a cellular implementation delay within
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the controller and on the lines between the controller and the data path

would be almost certain to be greater than data-path delays.

2. Data Flow (Self Timed). In this methodology ‘go’ and ‘done’ control sig-
nals are routed side by side with data signals. Note that one control signal
is usually associated with a whole word of data signals. Special self-timed
operators are used to implement the basic control operations of join, split,
conditional, loop [Seitz80]. This distributed control structure allows max-
imal parallelism in a pipelined implementation and does not suffer from
excessively long control signal routing. Self-timed structures are especially
suitable for our system because we are impleménting only small blocks of
code with very simple control structures. Traditional state-machine con-
trollers are much more area efficient when complex decision structures are
necessary: extra decisions require extra logic elements and associated rout-
ing in a distributed self-timed structure but only extra memory locations in

the control store of a state-machine.

6.2.5 Cell Assembly.

After the optimisation of the Boolean expression, we have a complete structural
description of the design in terms of a netlist of logical units capable of being
implemented by the primitive cells in the target array. The next steps in the pro-
cess could be termed cell-assembly and consist of floorplanning, global routing and
local placement and routing of functional cells. Floorplanning and global routing
are high level processes applied to large hierachical structures (e.g. our five way
comparator) within the structural description. Given this high level plan detailed
placement and routing within the large substructures and channel routing to con-
nect them up into the final design is also required. Usually, heavy computation is
needed in automatic placement and routing - techniques such as simulated anneal-
ing [Kirkpatrick83,Brayton86b] are often used in the floorplanning step to ensure
good results. Good placement of the computational units is very important since

excessive delays will result from long wires. Minimising the computation involved



Chapter 6. CAD Tools for Configurable Logic. 179

is also necessary in a system like ours where frequent recompilations will occur
as the program is developed. It is at this point that the advantages of the CAL

architecture as a target for ‘active’ compilers become apparent:

1. The architecture scales transparently over chip boundaries. Realistic size
systems will never fit on a single programmable chip given the overhead of the
configuration memory thus it is essential that multi-chip systems be supported.
Architectures which use ‘special-purpose’ input-output blocks are unsuitable for
large systems since single units (for example large logic blocks) in user designs will

be hard to split over multiple chips.

2. The architecture is completely symmetrical: this is important when floor-
planning large systems since it allows large subunits to be rotated and reflected to
obtain a dense packing. Algorithms for floorplanning silicon designs take advan-

tage of this flexibility.

3. There is a single resource in the system. Large units are built up by
composing small resources rather than breaking up large ones. One area where this
is particularly important is channel routing. In a large design channels with several
tens of tracks are likely to occur: in the CAL architecture there is potentially no
limit to the number of tracks in a channel, although each additional track may
require an additional line of cells (often two tracks can be fitted in a single line
of cells). In an architecture such as the LCA with special fixed width wiring
channel resources problems occur when that width is exhausted possibly resulting

in routing failure or grossly inefficient use of resources.

4. The routing model is simple and safe. Routing in a CAL design is simple
compared with other EPLD architectures such as the LCA [Xilinx86]: there is
only one class of routing resource so there is no question about which is the most
suitable for a given signal. All paths are fully buffered so there is no need to
worry about logic levels. These factors are important because they allow the use
of standard ‘channel routing’ algorithms which can produce high quality routing
relatively quickly. More complex architectures can still be routed automatically
using ‘maze’ routers but the results are likely to be worse and computation time

significantly longer.
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Figure 6—2: Cell Assembly Process.
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6.3 Data-Structures for Describing CAL.

This section discusses the choice of a data structure and file format to describe the
configurable logic arrays. This data-structure will be used by all the major design
tools and is a critical component of the CAD system. There are several important

design objectives:

1. Ease of Insertion. This is important for tools like graphical ‘leaf-cell’ editors
where it will often be necessary to insert cells in the middle of an existing
structure ‘pushing’ the existing cells out of the way rather than overwriting

them.

2. Ease of Locating Neighbouring Cells. In many algorithms (for example, maze
routing) it is essential to be able to locate the neighbours of the current cell

quickly.

3. Overlapping. To take full advantage of the available cell resources it is useful
to allow blocks of cells to overlap. This can often simplify design by allowing
a library of common partial designs to be kept which can be composed by
overlapping. The application of this technique is illustrated by the DES
encryptor design in Chapter 7 where global routing wires are overlayed on

large logic blocks.

4. Hierarchy. Hierarchy is essential to reduce the size of the design representa-

tion and minimise design effort.

5. Space Efficiency. Naturally, it is important to minimise the space require-
ments of the data structure to allow large designs to be done. Even on
systems with virtual memory large IC designs can approach memory limits
and some of the applications of CAL will require designs of similar or greater

complexity.

Several data structures were considered:
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1. Static Array. Normal (compiler allocated) array structures do not handle
insertion of new rows or columns well and require a lot of copying to make
space in the middle of an exisiting design. Another major problem in a
hierarchical design containing many blocks of widely varying sizes is that
the size of the array must be set large enough to hold the largest conceivable
block. The store required is therefore determined by the maximum block
size and the number of blocks so a hierarchical design with a large number
of small blocks is not represented efficiently. This data structure also has
problems with cut and paste editing operations which can gradually move a
design across the plane. A design may start at (0,0) with length and width
of 10 cells and finish up at (100,100) with the same length and width - the

size of the array must be at least (110,110) to cope with this movement.

2. Sparse Array. Sparse arrays are more suitable for interactive design systems
since the size of the array is effectively unlimited. Coupled with ‘normal-
isation’ to (0,0) offset for block bottom left co-ordinates when designs are
stored this can solve the array size and ‘creeping’ problems. In some imple-
mentations insertion of extra rows and columns can be done without copying.
Implementations can allow several array entries to have the same offset to
support overlapping subunits. Indexing into a sparse array is significantly

slower than indexing into a static one.

3. Corner Stitching. Corner stitching is a very popular data structure for VLSI
leaf cell editors {(Hamachi85]. Its realisation is more complex than the other
structures but it can support all the requirements except overlapping very

well.

4. Slicing Tree. Representation of the cellular structure as a hierarchical slicing
tree was the method chosen in the initial implementation of the Config-
urable Logic tools. This decision was motivated by the chip construction
tools described in [Wardle84]. A divided hierarchy with ‘leaf’ blocks con-
taining only cell instances represented using sparse arrays and hierarchical

blocks containing only instances of other blocks is also attractive since many
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placement and floorplanning algorithms work with slicing tree data struc-
tures whereas channel routing and logic synthesis programs would prefer
the array representation. The major disadvantages of this approach are its

inability to handle ‘cyclic’ structures or overlapping blocks.

The sparse array data structure was considered to be the most suitable for the
final implementation. It is implemented simply using a list of lists in SML [Harper86]
- much more efficient pointer based implementations are possible in imperative lan-
guages. The file format is a fairly direct textual mapping of this structure. The
file format is flexible in that it can describe the system at several different levels.
This allows the the front end tools to use the same file format to describe the

system before it has been totally converted to a cellular implementation.

The system is described as a collection of blocks. These blocks may contain
instances of other blocks and base ‘leaf’ cells. An example CFG file is given below

(this is the description of the toggle register shown in figure 7-1).
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BLOCK toggle

BPORT Q QUT 2
RPORT Q OUT 1
RPORT CLR IN 1
LPORT CLK IN 1

X1SOURCE north
X2SOURCE east
FUNCTION dlatch
ENDCELL

CELL (1,0)
ESQURCE west
WSOURCE self
X1SOURCE north
X2SO0URCE east
FUNCTION nor
ENDCELL

CELL (2,0)
WSOURCE self
NSOURCE self
SSOURCE self
X1SOURCE north
X2SOURCE west
FUNCTION dlatch
ENDCELL

CELL (0,1)
WSQURCE east
ESOQURCE west
SSOURCE self
X1SQURCE east
X2SOURCE west
FUNCTION or

TAMNATT
ENU Ll

CELL (1,1)
WSOURCE east
ESOURCE west
SSQURCE east
ENDCELL

CELL (2,1)
WSOURCE east
ESQURCE south
SSOURCE self
X1SOQURCE east
X2S0URCE west
FUNCTION xlorxz2bar
ENDCELL
ENDBLOCK

BLOCK test

ENDPORTS

INSTANCE (0,0) NULL toggle
INSTANCE (3,0) NULL toggle
ENDBLOCK

ENDOFFILE

184
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There are several elementary components in the data structure.

Cells. Each basic cell is described by the source selected by each of its multi-
plexors (including the GI and G2 global signals in the case of the X1 multiplexor)
and the function it is performing. The keyword FTEST is used to indicate that
the function block output of this cell is to drive the global FTEST output signal.

Instances. Block instances have a transformation (mirror in X or Y, rotate by

90,180 or 270 degrees) and the name of the instanced block.

Blocks. The cells within a block are described as a sparse array of ‘entries” an
entry can either be an instance of another block (possibly rotated or reflected)
or a ‘leaf’ cell. Each entry has an offset from a notional origin associated with
it. Normally the bottom left cell will be at (0,0) but this is not forced. Within
graphical editors a common technique is to normalise offsets so that the lower left
is at (0,0) when reading in blocks from a file then add a very large number (e.g.
1/2 maxint) to all coordinates. This allows structures to be added below and to
the left of existing blocks without having to support negative offsets (which can
complicate arithmetic in display operations which have to be fast). Overlapping
implies that there are potentially multiple entries in the data structure with the

same offset from the origin.

This data structure allows for fairly arbitrary overlap between components of
a block: this can sometimes be very useful but their are obvious problems with
clashes between overlapping cells. The behaviour of the system when clashes occur
is not specified but in the absence of clashes overlapping blocks will ‘add’ together
specifying the use of more of the cell resources. Hierarchical blocks can be flattened

into fully instantiated blocks containing only leaf cells.

Ports. As well as information about the structures contained within them blocks
have port information. Each side of the block has an associated port list. Ports are

represented as an offset, a name and a type according to whether they are inputs to
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or outputs from the block. One major disadvantage of this implementation is that
cut-and-paste operations which move cells within the block must also manipulate a
separate port data structure whereas if ports were associated with cells they would
be updated automatically when the cell moved. The advantage of the present
approach is that a block with ports and no cells can be used as a specification of
a wiring problem for the channel router: which will then return a block with the

same name and cells which implement the required connections.

6.4 Floorplanning and Global Routing.

Floorplanning is a high level placement process to decide the relative positioning
of large subunits within a system. Floorplanning is distinct from other placement
problems because the exact size and shape of the subunits is usually unknown:
decisions are made based on size estimates and connectivity between subunits.
There are two main approaches to the problem. Real systems will often have to
work with a combination of fixed blocks and flexible blocks but one style is usually

predominant.

Top Down Systems. In thesesystems the floorplanner is in control of the rest of
the cell assembly system. Based on netlist information about the interconnectivity
of blocks and number of gates within them the floorplanner formulates a proposed
placement. It also determines target areas, aspect ratios and port placement
information (things like which side a port should appear on and port ordering but
not actual offsets) for the blocks which are passed to lower level ‘cell-assemblers’
which attempt to produce layout for individual subunits within the constraints
imposed by the floorplanner. This method of ﬂoorpia.nning is typical for the ‘sea-
of-gates’ design style.

Bottom Up Systems. In this case the floorplanner is faced with macrocells

for subunits of fixed size and shape and the interconnectivity between them and
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must attempt to find a good placement. This method is required for library based

systems.

The floorplanning problem is specified identically for cellular and silicon designs
and the same program can easily be used although some fine-tuning of the cost
functions may be necessary to take account of the greater speed penalty on long

| interconnections. For this reason a special floorplanning program for CAL is not

required or desirable.

6.5 Logic Synthesis Methods.

In this section we will consider the mapping of truth-tables or logic equations into
array structures of basic cells. These techniques are of interest because the use
of a fixed array structure reduces the complexity of the computation required to
perform the logic synthesis by cutting down the search space and also does away
with the need for a separate place and route stage to layout a netlist of gates.
Array based logic synthesis methods (like PLA’s in VLSI layouts) are normally

used for large unstructured functions such as those found in sequencers.

This section will summarise various logic synthesis techniques which have been
suggested in the literature suitable for use with the 2 input 1 output flexible gates
provided by our cells, the next section will cover the logic synthesis tools provided
for the CAL system. A very large number of papers have been published on this
topic and here we will only attempt to provide an overview: the early papers cited

here use widely varying notations and are of mainly historical interest.

Most early papers concentrated on the problem of synthesising a given function
f:{0,1}* — {0,1} using a particular architecture and failing if no synthesis was
possible. This is not what is required in a practical system: we need an algorithm
which can split up unsolvable synthesis problems into several solvable ones and
combine the results. It is also necessary to be able to synthesise a solution for
f :{0,1}* — {0,1}™ with sharing of components between the individual one-

output problems.
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6.5.1 Cascades.

This is a very simple array structure capable of synthesising arbitrary functions.
A cascade is a line of two input one output gates each of which takes one input
variable z and a sub-result y. Most functions are not directly cascade realisable
but they can be partitioned into several cascade-realisable functions which are
then combined using an OR (or AND) collector row. Only 6 of the possible 16
two input one output functions are necessary to synthesise all cascade realisable

functions [Minnick64]. There are two classes of cascades.

Redundant Cascades. In this class of cascade input variables are allowed to
drive more than one column of cells. This allows permutation of inputs in dif-
ferent cascades which significantly increases the number of realisable functions.
Obviously, this comes at considerable cost in array area and so these arrays are of

mainly theoretical interest.

Irredundant Cascades. In this class of cascade input variables drive a single
column. This is consistent with a very simple array layout. There are 52—@:—4'&

functions which can be synthesised using n gate irredundant cascades [Maitra62].

6.5.2 Trees.

Trees are the next step up from cascades. Many different kinds of trees have
been examined based on various decompositions of boolean functions (e.g. the
Shannon Decomposition which gives rise to 2:1 multiplexor based trees). Tree
designs require more complex wiring and are not as suited to array structures.
Trees offer more directly realisable functions than cascades. Proposed synthesis
algorithms fail to suggest decompositions of functions not directly tree-realisable.

Like cascades both redundant and irredundant trees are possible
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6.5.3 Tandem Nets.

Tandem nets are a very interesting generalisation of the cascade due to But-
ler [Butler78]. The problem with cascades of gates is that only a small fraction
of switching functions are directly cascade realisable. Butler examined possible
ways of adding extra Universal Logic Modules to maximise the number of func-
tions realised. His technique requires at worst three modules for every one module
in a cascade - cascades are special cases of his nets and can be implemented as
efficiently as before. Transforming into an array layout we need, in general, two
rows and two columns for every one row and column in a cascade array. It would
be necessary to allow two columns right through the array and one or two rows
“according to the function being realised. The advantage is that many more func-

tions can be realised: in fact Butler shows that as the number of input variables

Neas
Nran

n increases limy,_o = 0. Unfortunately, Butler does not give a synthesis
technique capable of breaking up general functions into a composition of tandem
realisable ones. There is no reason to suppose that such a technique could not be

found, however, and it could be worth looking for one.

6.5.4 Irreéular Structures.

In this class of system there are no limitations on gate connectivity. It should be
noted that it can be proved that minimal implementations (in terms of gate count)
of even monotone boolean functions can require feedback [Rivest77]. Synthesis
algorithms impose restrictions on gate interconnect, however, and no known algo-
rithm can take advantage of feedback. This class of designs has become popular
for irregular large functions only recently with the development of algebraic tech-
niques for logic synthesis [Brayton86a), [Brayton86b]. It is questionable whether
the overhead of the irregular wiring needed to support these structures outweighs
the advantage of the increased number of functions which can be realised with the

same number of gates.
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n | Cascade | Tree Tandem Net. | Possible.
2116 16 16 116

3|88 152 240 256

4 | 520 2,680 | 6,448 65536

5 | 3,112 65,208 | 187,184 4.29 x 10°
6 | 18,664 |- 5,474,096 1.84 x 10"

Table 6—1: Number of n Variable Functions Realisable.

6.5.5 Summary.

Table 6-1 shows the number of n-variable functions realisable with the main tech-
niques described above. These figures are taken from several papers whose authors
use slightly different definitions of the various categories: some authors, for exam-
ple, allow variables to be input to the y input of the first gate in a cascade where
others insist that it is held at a constant value. These differences can account
for small differences in the number of functions claimed but the rates of growth
are not in question. The reason for using the results verbatim and not converting
to a common set of definitions is that the numbers are calculated from complex

recurrence relations which are hard to derive and solve.

6.5.6 Binary Decision Trees.

Binary decision trees or diagrams provide a general method of describing logic
functions with significant advantages over standard methods such as truth-tables
and logic equations [Akers78]. The function is viewed as a tree of decisions to
- be made based on input variables. Sequential functions can also be described.
There are very simple algorithms for generating multiplexor based implementa-
tions from these diagrams and for generating these diagrams from truth tables or
logic equations. Some work has been done on generating array layouts for these

trees [Oldfield83]. Many algorithms have been suggested for optimisation of de-
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cision diagrams [Payne77,Cerny79,Thayse81]. None of these were developed far

enough to be used in practical systems.

6.6 The Logic Synthesis Program.

In this section we will deal with the simple logic synthesis tools developed for
CAL. The logic synthesis system generates a rectangular array of cells which im-
plements a function specified as a minimised sum-of-products in the format output
by ESPRESSO [Hamachi85]. The use of this standard format will allow CAL’s to
prototype systems intended to be implemented using PLA’s. It also allows the use
of tools such as state-machine compilers (e.g. PEG [Hamachi85]) which generate

truth table output.

As in PLA designs the width of the cellular array is determined by the number
of inputs and the number of outputs and the height by the number of ‘product’
terms. Since the width is fixed the goal of the algorithm is to reduce the height

by minimising the number of product terms.

Single Output Function Algorithm. The program uses a generalised version
of the cutpoint array algorithm in [Papakonstantinou72] this produces a cellular
implementation of a sihgle switching function from a minimised sum of products
representation. The multiple input gates in the sum of products representation
are first converted to cascades of two input gates giving an initial cutpoint array

implementation. The implementation of the function
f =T33+ T1.22. T4 + 1.72.T4 + T1.22.23.24 + £1.22.T3.T4

is given in figure 6-3. This example is taken from Papakonstantinou’s paper: note
that in his model of cutpoint arrays constant 0 values are input on the left side
of the cascades in the ‘AND’ plane and the top of the ‘OR’ plane and only the
functions given in table 3-15 are available. The logic synthesis program avoids the
need to route 0’s to the edges of the array by using some additional cell functions

but we will assume Papakonstantinou’s method in this example.
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Figure 6-3: Stage 1.

The number of ‘product’ terms is reduced by ‘merging’ two cascades of gates
into one using one of three rules given in the paper. Such merges are possible
because of the much larger number of functions which can be realised using a
cascade of general gates rather than just X; Xz, X 1X; and X; gates. The rules
and the supporting mathematics are too long to quote here but we will present
their application to the function above which can be verified by hand. In this
example we can merge the first two ‘product’ terms into one giving figure 6-4. We
can then merge the term resulting from the first merge with what was originally the
first term giving figure 6-5. Two more merges are possible (figures 6-6 and 6-7)

resulting in a single row implementation.

Papakonstantinou gives some statistical results for his algorithm which indicate
that normally the merging rules will give an optimal or near optimal cascade
implementation of single output functions. In use he obtained a 27% reduction
in ‘product’ cascades over a minimal sum of products implementation. Cascade
implementations of logic functions are sensitive to the order of input variables so to
get optimal results it is necessary to run the algorithm for all possible permutations
of input variables: this is only realistic when the number of inputs is small. Note
that it is not necessary to reminimise the function to get another sum of products
representation for each case: only the merging rules need be re-applied for each

variable permutation.
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Figure 6-6: Stage 4.

Figure 6-7: Stage 5.
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Extension to Multiple Outputs. The key extension which must be applied
to the algorithm is to make it compute several functions over the same set of input
variables making the best use of product terms shared by several output functions.

There are two obvious ways of approaching this problem:

1. Minimise each switching function separately and produce a cellular imple-
mentation for each one. Eliminate duplicate product cascades and build an

array.

2. Minimise the switching functions together. Find all sets of product terms
which always appear together and attempt to find merges within these sets.

Use these merged sets to build an array.

Both these methods of extension have problems: the first method does not
specifically choose good representations of the functions to allow a high degree of
sharing of product terms; the second suffers from the fact that the sets of terms
which always appear together are much smaller than the set of minterms which
realise a single switching function and therefore merges are much less likely to be

found. The present system uses the second method.

Other Extensions. The rules in Papakonstantinou’s paper  do not take ad-
vantage of some very significant possible savings from the use of general gates:
general gates are only used in the AND plane but all the gates in the OR plane

are identical.

If we allow X; + X, gates to be used as well as X; + X, gates in the OR plane
an important saving arises. If two ‘product’ terms are complements then one can
be eliminated and an X; + Xz gate used instead of an X; + X gate. If a function
can be realised by a single cascade of general gates then so can its complement,

the argument for this assertion is as follows.

1. If general 2 input 1 output gates are available then you just need to change
the last gate in the cascade to invert the function (e.g. AND becomes NAND,
OR becomes NOR etc.).
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2. Maitra [Ma.itra62] showed that if a function was cascade realisable using all

16 possible gates then it was realisable using the six functions above.

This situation is different from the standard ‘AND’ type product terms where the
complement of a function realisable with a single product term often requires sev-
eral product terms to implement. Unfortunately, the number of cascade realisable
functions grows as 6™ whereas the maximum number of product terms grows as 2"
so unless n is small we can expect very few merges. For this reason this technique

was not implemented in the configurable logic system.

Another possible extension, not implemented in the current system, is to gen-
erate the cellular implementations of the product terms for AND collector rows
as well as OR collector rows. The important point is that these will be different
from the product terms in the OR collector implementation. With two implemen-
tations to choose from the program has more chance of finding shared product
terms between switching functions. Of course, X; X, gates can be used as well
as X;X; gates to allow complementary functions to be eliminated as in the OR

collector case.

6.6.1 The Configurable Logic ROM Generator.

This program was written to produce efficient implementations of multiple-output
‘ROM-like’ functions in which most of the 2" possible product terms were required.
The ROM generator is built up of two sections: an n — 1 bit decoder built using
2"~1 product terms and a special OR plane using several gate functions. The last
input variable is introduced at the bottom of each OR-plane column and each gate
in the OR-plane computes: a function of this variable and one of the minterms.
Since the AND plane is a simple decoder we know that ezactly one of the product
terms will be high for any input vector. The gate functions in the OR plane are
selected according to the desired truth table (table 6-2), where f indicates the
ROM function. The idea behind this table is that gates in the OR plane pass
either the output of the previous gate in the cascade (if their product term is zero)

or generate one of two possible ROM entries depending on the last input variable
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Figure 6—8: Seven Segment Decoder using Papakonstantinou’s Algorithm.

(if their product term is one). The gate whose product term is high is guaranteed
to have the input variable available since all the gates below it in the cascade will
have low product terms and hence have passed it unchanged: similarly all the
gates above it in the cascade will pass its output unchanged. Four functions are

required (X; + X2, X1 ® X2, X1.X2, X2).

This method of implementing ROM’s cuts the height (number of product
terms) by 50% and the width by one column of cells. A further optimisation

Product (X;) | Input (X;) | Output (F)

0 0 0

0 1 1

1 0 f(zoy-..,2Zn-1,0)
1 1 f(zoy- - ZTpn1,1)

Table 6-2: ROM Truth Table.
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Figure 6-9: Seven Segment Decoder using Configurable Logic ROM.

would be to remove product terms from the n — 1 bit decoder in the situation
where the gates in the OR plane are identical for two product term rows p; and p,
and the function p; + p2 can be computed by a single cascade. This optimisation is
not implemented by the present system since the expected number of such merges

1s small.

An implementation of the seven segment decoder example of the last section

using this technique is shown in figure 6-9.

Pipelining the CL-ROM. Let us consider the effect of placing a row of pipeline
registers within the ROM array across both AND and OR planes. Let n,m,p be
the number of inputs,outputs and ‘product’ terms respectively, and r,c be the
routing and computation delay times for one cell (¢ ~ 3r). The maximum delay
through the CL-ROM is then (n — 1)c + (m — 1)r + pc, the terms correspond to
AND plane calculation time, routing to the last column of the OR plane and OR

plane calculation. With pipeline registers in place the delay through each stage is
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(n—1)c+(m—1)r+ p,c+2c, so only the last term is reduced. The delay through
the ROM with s pipeline stages is now s((r — 1)c+ (m — 1)r) + pc + 2s¢, the last
term is caused by the delay through the pipleline registers. Normally there are
many more product terms than inputs or outputs so pipelining can produce a very
useful increase in throughput. In designs with a relatively large number of inputs,
a column of pipeline registers between AND and OR planes can further increase
throughput by allowing AND plane computation to proceed in parallel with OR

plane computation.

6.7 Structural Layout.

There have been many placement and routing algorithms suggested for turning
netlists of gates into silicon implementations. Provision of efficient structural
layout algorithms is important in a developed cellular system to allow the use of
multi-level logic synthesis programs which produce gate netlists - these are a vital

component of the proposed ‘active’ compilation system.

There are two main steps in structural layout: placement and routing. In the
placement step gates are clustered so that highly interconnected gates are close
together and in the routing phase these gates are wired up. The simplest algorithm
is called ‘linear-clustering’ and produces a long line of gates which is then sliced
up into pieces of approximately the same length separated by wiring channels to
produce a roughly square chip. This technique is not suitable for cellular designs
since the individual ‘gates’ are much too small so nearly all the area would be
taken up by wiring. It might be possible to use this technique in conjunction with

larger ‘macros’ built up from several cells.

To make efficient use of the cell resources it is essential that the logical and
wiring areas are mixed together. This is very similar to the situation in the
‘sea-of-gates’ silicon design style and it is very likely that placement and routing

algorithms developed for these silicon systems could be adapted for configurable
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logic. In fact, configurable logic’s limited routing facilities simplify the algorithms

even further and very good results are likely.

6.8 Routing.

6.8.1 Channel Routing.

The system provides a channel router to allow composition of cells according to a
floorplan and global wiring plan. This code is implemented as an SML function
which takes a block containing only port information (possibly read from a CFG
file) and two integers representing the length and width of the desired channel and
returns a block with the required routing and an indication of success or failure (the
channel may not be routable in the specified number of tracks or cyclic constraints
may force additional columns). Two algorithms have been considered for use in

this system.

Recursive Decomposition. The router is based on a recursive decomposition
of the subproblem along tracks. Each track generated is guaranteed to improve
the situation resulting in an easier subproblem being handed to the next recursive
call. The perceived advantage of this approach was that it was not necessary to
specify the width of the channel in advance - the router automatically produced
as many tracks as necessary. More conventional channel routing algorithms are

given the number of tracks to use and fail if the routing cannot be completed.

Experience with this algorithm was not favourable since (because it worked
on one track at a time and did not know how many tracks would eventually be
used) it often put nets on the first tracks generated to make use of free horizontal
routing resulting in much longer than necessary vertical routing. This was seen
as an unavoidable side effect of the approach and so a more conventional routing
algorithm which requires the width of the channel to be specified in advance was

chosen for the final implementation.
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Track

Column

Figure 6—10: Wiring Channel Model.

Greedy Router. This algorithm is based on the Detour router from the Magic
design system [Hamachi84], which in turn is a development of the system in [Rivest82).
It operates on a column by column rather than a track by track basis. .At each
column as much vertical wiring as possible is added to simplify the problem in

succeeding columns. This is the algorithm used in the final implementation.

A diagram of the basic wiring channel is given as figure 6-10, note that the
algorithm can be generalised to route ‘switchboxes’ with connections on all four
sides. The channel is visualised as a rectangular grid of rows (called ‘tracks’) and
columns. The ‘greedy’ algorithm operates by sweeping along the channel from left
to right wiring up one column at a time: within each column it attempts to place
as much vertical wiring as possible (hence ‘greedy’) to leave a simpler problem in
later columns. Since there is no backtracking there is no guarantee that the best
solution will be found or that a potentially wire-able channel will be solved: on

the other hand channels are always wired within a reasonable time.

Figure 6-11 shows the basic structure we are operating on at each column.
Given the nets which enter from the left, the top and bottom ports and a list of
nets which must be extended to the right we must generate wiring in this column

such that
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Figure 6—11: Wiring at Channel Column.

o The problem can still be solved.

o The remaining problem is reduced as much as possible.

The algorithm for creating the wiring in the current column can best be described
as a series of rules. Note that these rules are identical to those in the original paper
but their implementation is slightly complicated by the more complex routing

available within each cell.

1. Bring New Nets into the Channel. First of all the router must bring any
new nets into the channel. Nets are brought into the first available track,
or when the net has ports to the left of the current column and there is no
intervening vertical wiring to the track currently holding the net. If a net
cannot be brought into the channel then the routing will fail so this step
must be done first (since other steps could add vertical wiring which blocked

these nets).
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2. Merge Nets. Sometimes the same net will occupy more than one track in
the channel. This can happen when the path from a track to a port in a
previous column was blocked by essential wiring for other nets. The router
attempts to ‘merge’ such ‘split’ nets by vertical wiring as soon as possible
since they require additional area. When split nets cannot be merged they
should be jogged closer together to minimise the amount of wiring needed
to merge them in a succeeding column. Note that this step generates only

vertical wiring and cannot cause routing failure.

3. Extend Nets to Right. In this step we extend all nets currently in the channel
with ports to the right of the current column to the right (this gives the left
port definition for the next call of the column router). Where possible ‘rising’
nets are jogged upwards and ‘falling’ nets downwards to be nearer to their
next port. Heuristics can be used to prioritise the order in which nets are
jogged (e.g. a net with ports on both sides of the channel may be better on
a central track but a net with only one port to the right at the base of the
next column should be jogged down as far as possible). It is important that
these attempts to improve the problem for subsequent calls of the router do
not stop any net from being extended across this column (since this would

cause the routing to fail).

Figure 6-12 shows a small example channel generated by the channel router.
We can see that nets B and E are both split at some columns within the chan-
nel but are quickly merged. Much larger wiring channel examples are given in
the DES example of Chapter 7. Note that the current channel router is fairly
primitive in terms of the rules applied within each column and produces signifi-
cantly sub-optimal wiring channels, development of the router was stopped after
the channels required for the DES example in Chapﬁer 7 had been succesfully
routed. Implementation of a high-quality channel router would be a major project
(and should be tackled in an imperative language to achieve reasonable run times
on large channels). The present system demonstrates that conventional channel

routing algorithms can readily be adapted for cellular structures.
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Figure 6-12: Example of Wiring Generated.

Pipelining Large Wiring Areas. In large wiring areas the delay through rout-
ing cells can be quite significant. One way to reduce the impact of this problem
is to use pipelining within wiring channels: this is relatively easy to do since the
function units of the cells within the channel are unused and the pipeline clock
can come from low delay global signals. CAD software could be developed to im-
plement the necessary pipelining automatically based on required throughput or
return a failure message if this was impossible. Implementation of such software
should not be difficult since it would simply involve counting cell delays for each

path in a previously wired channel.

6.8.2 Maze Routing.

Whereas channel routing is used for separate wiring areas free from obstructions
(although limited obstacle avoidance can be added) maze routing is required to
implement wiring within blocks with existing conﬁe;:tions. The basic component
of this kind of router is an algorithm for finding the shortest path between two

points in the presence of obstructions (e.g. Dijkstra’s Algorithm or the Lee-Moore
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algorithm), this computation is then performed for each net in turn. The problem
is that wired nets will potentially obstruct nets which have not yet been wired, the
complexity of maze-routing algorithms lies in strategies to avoid this contention
by choosing a good order to wire the nets and recover from it (by ripping up nets

wired previously) when it occurs.

Complex maze routers can be used for global wiring of large systems, such
routers generally have ‘backtracking’ capability to allow rerouting of nets blocked
by earlier connections, the concept of ‘wavefront’ routing based on the propaga-
tion and diffraction laws for physical waves when they hit obstacles is becoming
popular {Xiong86]. The present system envisages a router working on single nets
under direct user control: the user would determine the order in which nets from
a net list were wired and could direct the system to rip up any given net. This

router would be used as a component of the graphical editor described below.

6.9 Graphical Tools.

This section describes some graphical tools for manual layout of Configurable Logic
systems. It should be read more as a specification of what is possible rather than
a description of an actual implementation; although partial implementations of
the functions described have been coded in SML [Harper86]. It was originally
intended to produce fully functional versions of these tools to support the designs
in Chapter 7 but it quickly became clear that the limitations of SML in terms of
speed and low level control of the screen would limit their utility so much that it
would be more convenient to do the small ‘leaf-cell’ designs by generating CFG
files with a text editor - the large wiring areas and logic blocks were generated

using the automatic tools.

6.9.1 The Leaf Cell Editor.

This is a simple graphical editor to allow the user to do hand crafted designs

using the cells. This would be appropriate for commonly used functions such as
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counters and adders where engineers may wish to use ‘textbook’ designs rather
than less efficient automatic implementations. It also provides a tool for viewing

larger designs to check their correctness.

Wiring would be done by clicking on the start and end points of the proposed
wire, a maze router then makes the connection if one was possible. User’s can
control the wiring path by building long wires from several shorter ones thus
constraining the maze router to follow the desired path. Cell functions are selected
by clicking on the gate within the cell at which point a menu appears with the
available functions on it. Special entries on this menu allow for the use of the
FTEST and G1 and G2 global signals. The user can pan around the design using

cursor keys.

Operations on hierachical blocks would also be supported. Editing operations

| would be provided to manipulate whole blocks (represented as rectangles) into the
desired structure. This graphical representation could allow zooming unlike the
fixed scale cellular representation (the representation of leaf cells must have a fixed
scale because of the difficulty of scaling textual annotations like cell functions and

port names).

6.10 Optimisation.

After a design has been produced using the tools outlined above there will often be
considerable scope for an optimisation phase. Some of the most important areas

where optimisation would be possible are outline below.

1. Gate Collapsing. Graph traversal techniques can be used to determine cases
where gates are unused or several gates are being used to implement a func-
tion which could be implemented using a single gate. Such cases are very
likely to occur in circuits composed of standard library parts and the avail-
ability of completely general two input gates makes collapses more proba-

ble. A gate collapsing phase which removed surplus gates would be easy to
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implement and, although it would not save space in itself (since the place-
ment of cells would not be changed) would reduce delays and provide more
scope for following optimisation phases. Algorithms for this problem are
well known and have been used for many years to improve gate level designs
produced by simple logic synthesis programs which converted logic equa-
tions directly into gates [Shinsha84]. Similar techniques are used in gate
array systems to remove redundant stages which arise when library parts

are connected [Lattice86].
2. Use of Channel Area. In the naive layout the function units of the cells
functions into the wiring channel.

3. Local Perturbations. Given a cellular design one could attempt to move
gate functions nearer to the ‘bottom-left’ of the array. This could be done
by ripping up the wiring to a gate, moving it to a cell with an unused function

unit and attempting to rewire the gate.

4. Compaction. In its simplest form this would consist of eliminating ‘straight-
through’ rows and columns which may occur in wiring channels. More de-
veloped systems could use the constraint graph or ‘zone-refining’ approaches
developed for silicon designs. Possibly at some time in the future a ‘sticks’
representation for cellular designs conveying only topological information
and its associated fleshing program could be developed - this would be a sig-
nificantly easier task than the corresponding silicon program where complex

geometrical design rules must be followed.
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6.11 Back End Tools.

Concurrently with the design of the prototype CLA stopwatch chip described
in Chapter 7 some simple software tools for drawing cell connection diagrams,

simulating designs and generating CIF were developed.

These tools were written in IMP [Robertson77] about a year before the front
end code described above and run on locally designed APM workstations. They use
a previous (slicing tree) version of the CFG file described above and have not been
converted to read the new file format. This is because they were unnecessary for
the remainder of the project and if they were to be ported to the SUN workstations
it would make sense to rewrite them in C or SML: this effort was not considered

worthwhile.

6.11.1 MODEL Interface.

At present simulation is provided by extracting a description of the circuit in
Lattice Logic’s MODEL language [Lattice86] which can then be simulated using
the EXERT simulator. This approach was chosen because it was easy to implement
and provided a low level simulation using well proven software thus giving high
confidence that the stopwatch circuit was correct. This interface can also be used
to extract designs verified using the CAL technology for implementation in silicon

via the SOLO-1000 software suite.

6.11.2 CIF generation.

The tools to generate CIF from a CLA description are by far the most complex
of the back end tools and will be discussed in detail. The CLA tool works within
the ILAP system [Hughes82] in the same way as the PLA generator by producing
a symbol with ports given a description in a file. It is accessed via the external

routine call given below.
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hexternal Yroutine %spec cla %alias "CELL_CLA"

(%string(31) symbol name,file name)

This allows CLA’s to be integrated with other ILAP constructs such as PLA’s,
counters, custom leaf cells and, most importantly, pads. The present tools must
generate geometry on all layers, not just metal2. It would be easy to modify them
to produce only the metal 2 geometry to personalise standard sizes of configurable

logic arrays.

The problem of deciding which routing wires to use within a cell given a de-
scription of the connections the cell is required to implement is not trivial and
is approached as follows. A file is prepared manually giving a list of possible
ways of doing each connection e.g. North Input to South Output may have
five possible paths through the cell (the most obvious of which uses tile num-
bers R103,R104,R1,R90,V1,R28,R127,R128,R129,R130 in figure 5-9). A program
then uses an exhaustive search over these paths to try to route each possible per-
mutation. The present CLA cell has 4096 legal routing permutations (note that as
discussed in Chapter 5 the CLA cells are slightly different from the current CAL
cells in that there are no G1, G2 or FTEST signals).

An additional requirement is that the number of CIF statements output should
be minimised and the number of symbols at each level of hierarchy should be kept
relatively small. To do this symbols are generated for each of the possible intra-
cell paths (e.g. North Input to South Output) used in an actual chip. There are
usually very many fewer used paths than possible paths. These symbols instance
the basic routing tiles shown in Figure 5-9. The program then generates a symbol
for each distinct cell routing permutation within the design which instances the
symbols for single intra-cell routes, again it would be surprising if more than a
fraction of the possible 4096 permutations were used in a given design. Symbols
are also generated for all legal cell functions which instance the basic function tiles

shown in Figure 5-8.
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These routing symbols are then superimposed as appropriate with one of the
cell function symbols and a symbol with the unpersonalised basic cell to produce
the required cell design. These additional levels of hierarchy are important in
practice since they greatly reduce the size of the CIF files produced - by a factor
of three in the case of the stopwatch example in the Chapter 7.

6.11.3 CAL Programming.

This program reads in a CFG file and generates programming information for.
CAL’s. Unlike the other back end tools it is written in C and runs on a SUN
workstation using the new CFG format. The program is complicated by the need
to take account of inversions caused by routing multiplexors and modify cell func-
tions accordingly. It must also have detailed knowledge of the layout of the CAL
in order to find the particular RAM cell controlling a multiplexor in the cellular
design. This involves compensating for the different logical and physical connec-
tion schemes used to produce a square array from rectangular cells (Chapter 4).
The program outputs its results in the order required for the serial programming
interface. As well as producing a ‘binary’ file for downloading into CAL’s (at
present this is a script for the RNL switch level simulator since no CAL’s have
been built) it produces a map showing the binary values within each logical cell

in the CAL array. This is useful for debugging purposes.

6.12 Summary.

This chapter has discussed the design automation aspects of the cellular logic
architecture and presented some simple design automation tools. These tools have
been used successfully in the design of several major example applications (Chapter
7). They illustrate that the techniques used in VLSI CAD can successfully be
applied to cellular systems. They do not constitute a fully engineered CAD system

and were never intended to do so.
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Given the large effort involved both in CAD system design and in learning
a new CAD system as a user, it makes far more sense to integrate support for
configurable logic into an existing design system than to create a totally new
system to support it. This is especially true where configurable logic is to be used

to prototype ASIC’s.



Chapter 7

Design Examples.

This chapter presents four examples of designs done using the configurable logic
system: the first (a digital stopwatch) is typical of the sort of system that would
fit on a single CAL chip in an EPLD application and allows an area compari-
son of configurable logic with other design systems. The second example, a Data
Encryption Standard (DES) encryptor/decryptor is much larger and serves as an
example of the kind of application which could be tackled byO; board full of con-
figurable logic chips. The third example illustrates the use configurable logic
to accelerate ‘inner-loop’ calculations in an image processing problem. The final
example shows how configurable logic can be used as a component of a very high

performance system for fluid-flow simulation using a cellular-automata algorithm.

7.1 Stopwatch Example.

This section covers the design of a simple digital stopwatch designed to count up
in tenths of a second to one minute and display the current time on three seven
segment displays (tenths of seconds, seconds and tens of seconds). The watch is

controlled by three signals:
INIT Clears the stopwatch to zero and puts it in the ‘stop’ state.

211
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$S Start/Stop A high going edge in the ‘stop’ state starts the watch counting.
A high going edge in the ‘start’ counting state puts the watch in the ‘stop’

state.
CLOCK 10Hz clock signal.

This design example was originally set as a practical exercise to MSc students to be
implemented using PLA’s. The seven segment decoders provide a good example
of ‘random’ combinational logic while the counters provide a good example of clas-
sical sequential logic. This design uses three separate units for the three displays
although the design complexity and area could be reduced by implementing it as
a single state machine with multiplexed displays (since the large seven segment
decoder logic would not need to be duplicated). This is necessary to comply with
the design specification given to the students in order to make a fair comparison

between design styles.

7 ‘1'1, The Counter.

The counter is built from 4 toggle flip-flops (Figure 7-1). The basic 4 bit ripple
counter is converted to a decade counter by a gate which sets the clear line when
the counter gets to ten. The output of this gate is also used as the clock for the

succeeding counter. The counter can also be cleared by the user’s INIT signal.

Providing the clear capability was the only real problem in the design of the
toggle flip-flop (the basic D latches have only clock and D inputs). The clear is
provided by extra logic gates which force 0’s onto the D inputs and 1’s onto the
clock inputs. A basic master-slave flip-flop can be built with only two D latch cells

whereas this clearable implementation requires six cells.

The toggle flip-flop is a good example of the sort of component which must
be designed manually rather than automatically. It was necessary to spend quite
a lot of time to find a good layout for this function. As the system develops it
would make sense to build up a library of efficient designs for such commonly used

functions.
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Figure 7—1: Counter Design.
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Figure 7-2: Seven Segment Display.

7.1.2 The Decoder.

The decoder (figure 7-3) takes advantage of the ability to produce any function of
two boolean variables within one cell and uses several levels of logic rather than

the two level logic normally used to implement such functions.

The decoder logic was designed by hand by Genbao Feng and took the greater
part of the one-man week spent on the whole design. It is interesting to com-
pare the quality of the logic synthesis with that of an automatic implementation
generated by the newer design tools. The truth table for the function is given
as table 7-1 (using the segment labelling of figure 7-2) and the minimised ver-
sion output by ESPRESSO as table 7-2. This design can be compared with the
automatically generated versions in Chapter 6. The Configurable Logic ROM im-

plementation requires an 11 (4 inputs plus 7 outputs) by 8 (product terms) array
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Input |a |b [c {d |e | |g
0000 {1 j1 4§11 |1 {1 1|0
0001 |0 |1 {1 |00 ]|0}0
0010 |1 |1 (0 (1 ]1 01
0011 {1 (1|1 4}11]0]0]|1
0100 fO (1 1 ]0 (0|11
0101 1 jo 1 |1 (0|1 |1
0110 |1 |JO 1 (1 |1 |1 |1
0111 j1 {1 (1 (0|00 |0
1000 (1 (1 1 1411 ]1
1001 |1 j1 14101 |1
1010 | XX |X[X|X|X[X
1011 | XX |X[X]|X|[X]|X
1100 | XXX | X[ X[X|X
1101 | X[ XXX |X|X|X
1110 | X[ X | XX [|X[X[X
111 [ XX | X[ XX [X|X

Table 7-1: Segment Truth Table.

Figure 7-3: Seven Segment Decoder Design.
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Input Ja|b|c|dle|f|g
X0X0 {o|o0fO0j0(1(0/{0O
Xo0X [0j1(1]|0j0j0]|0O
X000 {1j0f0]j1]j0(1¢0
XX11 j1f{1{1{0;0{0]0O
X100 jo0{1)110(f0|1]1
X101 {140 (|1 ]1j0(1]|1
X01X [1(14j0]1]|0]j0]1
X110 |1f{0|1{1|1j1]1
IXXX|11(0]0f1|0j1]1

Table 7-2: Minimised Segment Truth Table.

of cells compared with an 11 by 4 array when implemented by hand. The following

points are worth noting:

1. Flexibility. The greatest advantage of the human generated implementation
is the way the layout of the logic unit has been optimised to fit in with
the chip pinout requirements and the counter design. Although there is a
structure to the layout (note that input variables are routed horizontally
across the array and outputs are collected using vertical wires) it is specific

to this particular example.

2. Variable Ordering. In the automatically generated array the order of the
input variables in the cascade of gates is fixed. Only the function performed
by gates in the cascade can be changed. The human implementation gets
a much better factorization of the logic equations by changing the order of
variables in the gate cascades and using trees rather than simple cascades of
gates. This can only be achieved by having a special routing plan for each

function implemented.
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3. Design Time. Although the automatic implementation is much less efficient
it was done in about 10 minutes. The human generated implementation took

several days.

4. Design Size. This example is at the limit of what can be efficiently hand
designed by a person: larger functions would probably be designed just as
inefficiently since the human would need to take steps to reduce the design

complexity to a manageable level by reducing the design space.

7.1.3 The Control Logic.

The controller function (at the bottom left of figure 7-5) is implemented using a
toggle flip-flop. The design is the same as those within the counters. The toggle
flip-flop is clocked by the start-stop inpﬁt and its output determines whether the
counter should be stopped or run freely. The initialise signal clears the control
flip-flop and stops the counter. The counters are stopped by AND’ing the 10Hz
clock with the output of the control flip-flop: thus when the output of the control
flip-flop is 0 the counters’ clock input is held low and when it is 1 the counters

receive the 10Hz clock input.

This is one area in which the configurable logic implementation is much more
efficient than the PLA designs. These require a three phase 1MHz clock and use
a whole PLA just to implement the start/stop function.

7.1.4 Floorplan.

The floorplan of the full watch circuit is given below as figure 74 and the layout
in figure 7-5. 1t requires a 20 by 13 array of cells.

7.1.5 CLA Implementation.

Only that part of the design enclosed by the box was fabricated. The fabricated

design with one decade counter, the control circuitry and the seven segment de-
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Seg. 3

Seg.

Seg. 1

13
cells

20 cells

Figure 7—4: Stopwatch Floorplan.

START/STOP

Figure 7-5: Full Stopwatch Design.
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Figure 7—6: Plot of Stopwatch Chip.

coder required a 14 by 7 array of cells giving a core (i.e. before pads and pad
routing) symbol size of 2016 by 932 um.

Note that the design software could make a squarer chip (which would normally
allow larger designs) by orientating the cells with their shorter (132um) side along
the longer (14 cell) edge of the target design. In this case the die size was fixed so

there was no practical advantage in doing this.

The CIF plot of the final chip (figure 7-6) shows clearly the reason for only
implementing one counter rather than the full watch: the large notch cut out of
the top right corner of the standard die for test structures and the fixed die size
meant that our design could not take full advantage of the silicon area. The pads
are placed for use by the PLA based watch chip so many of them are not required
by this design with its reduced functionality.

~

Test Results. The fabricated chip was tested and was found to be completely
functional. A complete stopwatch was built using three of the prototype chips
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and left running for several days, no problems were discovered. No attempt was
made to measure the maximum speed of the devices: it is likely that the pads
would provide the speed limitation rather than the logical elements. Of the 20
chips fabricated 18 functioned perfectly, one had a segment on continuously but

was otherwise functional and one failed completely.

7.1.6 Size Comparisons.

The digital stopwatch example has been designed using several different styles:
CAL, CLA (single mask change), PLA and multiple mask change ‘optimised’ (be-
cause wiring channels and logic areas are only as large as they need to be - the
detailed chip floorplan is specific to a particular design) gate array. The opti-
mised array designs were done by European Silicon Structure’s SOLO-1000 sys-
tem (previously Lattice Logic’s CHIPSMITH silicon compiler) [Lattice86] using
an input specification (in the MODEL language) generated automatically from
the cell based design. This compiler has had many years of development and pro-
duces very high quality layouts for this kind of design: in this case it can also
take advantage of the efficient gate level design done for the configurable logic
implementation. The figures for this design are, therefore, better than average for
this implementation style. The PLA designs were done by students as a practical
exercise and have been fabricated using lambda rules with A = 2um (i.e. 4pm
technology). They are composed of four PLA’s one for each of the segment units
and one for the controller. The CLA example was also done to these rules and
a section of it containing one segment unit and the control logic was built and
tested. The CAL and gate array designs were done using the same commercial
2pum rules. The areas given are core symbol sizes (no pads), the CAL figures are
for a 20 by 13 (logical) chip. The results are given in Table 7-3, in this case there
is a factor of about 15 in area between the CAL implementation and the optimised
array: special processing in the CAL design could significantly reduce this gap.
Although a factor of 15 seems high it suggests that any gate-level design which
will fit on a single ASIC could be prototyped using a board full of configurable
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Design. Technology | Dimensions
CAL 2um STTT x 3786um
CLA 4um 2858 x 1724um
PLA dum 1432 x 1625um
Gate Array | 2um 1544 x 952um

Table 7-3: Design Size Comparison.

chips. Or, to put it another way, CAL has to be reprogrammed about 15 times to

regain parity with normal logic.

7.2 Data Encryption Standard Example.

In 1977 the United States National Bureau of Standards (NBS) promulgated a new
standard for encryption of unclassified data [NBS77] based on a proposal by IBM.
Since then this algorithm has become the de-facto standard for data encryption
worldwide. The algorithm is very suitable for implementation in hardware and
several commercial products are available. In this section we will first outline
the DES algorithm and secondly develop an implementation. DES provides an
excellent example of an algorithm which can be speeded up greatly by bit-level
hardware implementation and is also a good example of the sort of ASIC design

which could be prototyped using CAL'’s.

7.2.1 Introduction to DES.

DES is a substitution cipher on 64 bit binary vectors based on a 56 bit key. The
strength of DES lies in the complexity of the substitution. Two good introductions
to DES are [Tanenbaum81] and for a more in-depth analysis by an IBM ‘insider’
[Konheim81]. Since it was first promulgated the DES standard has been the
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subject of a great deal of controversy. Two main attacks have been made: firstly
that the 56 bit key is not long enough (the original IBM proposal suggested 128
bit keys) and secondly that some sort of trap-door exists in the algorithm allowing

rapid decipherment without knowledge of the key by those who know of it.

The first claim has some validity if the DES algorithm is used naively as a
‘black-box’: a hardware implementation of the algorithm using several hundred
custom chips could do a key search in a reasonable time (this was first shown by
Hellman [Hellman80]). It is certainly true if the keys are concatenations of 8, 7 bit,
ASCII characters representing an English word rather than random 56 bit integers:
in this case a key search taking advantage of letter frequency information is almost
trivial with appropriate hardware. For this reason, in 1980 a follow up document
was issued by the NBS detailing additional modes of operation of the cipher: these
break the one to one relation between plaintext and ciphertext by making each
ciphertext block depend on previous blocks as well as the current one [NBS80].
The cipher can also be strengthened by using multiple encipherments with different
keys and generating good 56 bit keys from a longer string of english text using
DES as a hash function [Konheim81]. These modifications are easy to implement
and make key search totally infeasible. In terms of hardware implementations
limiting the key length to 56 bits makes it much easier to place a whole encryptor

on one chip.

The second claim has never been established despite a lot of work on analysing
the cipher: the main reason for believing it is the refusal of the U.S. government
to let IBM disclose all the criteria for the design of the cipher. No attempt will
be made to analyse the cryptographic properties of DES here, a detailed analysis
is presented in [Konheim81].

7.2.2 The DES process.

The DES algorithm is illustrated in figure 7-7. All the {-boxes are identical and
it is obvious that a major design decision which must be taken is whether to

have one reusable f-box or 16 separate ones to allow pipelining. We will consider
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Figure 7-7: DES Block Diagram.

the major components in the block diagram individually. We will try to give
an idea of the size of the wiring channels (unfortunately channel density cannot
be quoted because it depends on the ordering and spacing of the ports which
is implementation dependent) and we will give the number of product terms in
a minimised PLA implementation (determined using ESPRESSO) for the logic
blocks.

Permutations /P and IP~!. The first step in the DES algorithm is to apply
an initial permutation I P to the plaintext, the final step is to apply the reverse
permutation JP~!. These permutations involve simple wire swapping and could
be implemented using the channel router however the resulting channel would be
wide. The permutations are highly structured and more cost effective implemen-

tations than straightforward wire swapping can be found.

Design of the f-box. The heart of the DES process is the f-box which performs
the function = : (L, R) — (R, L&T(R)), where L and R represent the left and right
32 bits of the 64 bit input. The transformation T is composed of an expansion
(bit copying) to 48 bits modulo 2 addition with a key, substitution (in which each

group of 6 bits is taken as representing a binary number which is then substituted
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Figure 7—8: DES f-box Block Diagram.

for another 4 bit binary number using a lookup table, bringing the size back to 32
bits) and a 32 bit permutation (wire swapping).

The major components in the DES f-box are illustrated in figure 7-8. The
important point to note is that the width of any hardware implementation is fixed
by the number of bits to be operated on. We must concentrate on reducing the
length of the unit. We will now consider the components of the f-box in order left

to right.

1. Expansion. This step involves expanding groups of four bits in the data to
six bits by copying the outer two bits as shown in Table 7-4. This step fixes
the height of the implementation as at least 48 cells.

2. XOR with key. This is the critical operation in the whole cipher since this
is the only point where the output ciphertext is modified by the key. A
different 48 bit key derived from the user supplied 56 bit key is used in each
f-box.
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Before. After
Lo, T1,T2,T3 r31,20,21,22,73,%4
ZT4,Ts5,TgyT7 T3,%4,T5,TgyT7,T8

gy L9, T10, T11 T7,T8y L9, T10, T11, T12

T12, 713,714, T15 | 11,212,213, T14,T15,T16

L169Z17,T18,T19 | T15,L16y L17) T18y Z19,T20

Z20, 21,222, T23 | T19,T20, T21, Z22,T23,T24

T24,T25,T26, T27 | T23, %24, T25,T26, L27,TL28

T28, T29, T30, T31 | T27,T28, 29, T30, T31, L0

Table 7—4: DES Expansion.

3. S-Box. The S-box or substitution box has 4 outputs and takes 6 inputs, 4
‘data’ and 2 ‘control’. The control inputs select one of four 1 to 1 substitution
functions over 4 bit binary integers. There are 8 separate S-boxes each of
which uses different functions. These units are most naturally implemented
as blocks of combinational logic. Running the functions through ESPRESSO
produced very little minimisation - all 8 S-boxes required more than 50
product terms. This is presumably because the cryptographic properties
of DES require an irregular function whereas logic minimisation relies on

finding regularities.

4. P-Box. The P-Box or permutation box does a simple wire swapping oper-
ation on its inputs. This can be implemented using a channel router in a

reasonable area.

5. XOR and Swap. The swap is necessary because without it only the right
half of the plaintext would interact with the key. This would imply that 32
bits of the ciphertext would be identical to 32 bits in the plaintext (which
32 bits in ciphertext and plaintext would depend on the initial and final
permutations). The XOR is also crucial to the complexity of the cipher
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because without it there would be two groups of 32 bits in the ciphertext
each of which depended only on a group of 32 bits in the plaintext. Instead
of being a 64 bit, 16 stage cipher it would be two separate 32 bit, 8 stage

ciphers and hence much easier to crack.

Final Swap. This has the effect of cancelling out the swap in the final f-box.
This is done to keep the cipher symmetrical so that decryption can be done by
re-encrypting with the same key - thus only one DES unit is required (not two,

one for encryption and one for decryption).

Design of the Key Handler. This logic controls the key which is applied to the
f-box at each stage of the DES operation. This is determined by the key-schedule.
The design of the key-handling unit is shown in figure 7-9. We will describe the

major components in turn.

1. PC1. The PC1 unit applies an initial permutation to the bits of the key.
This unit is 56 bits wide. It can be implemented using a channel router but
the channel is fairly wide, better implementations based on the structure of

the permutation are possible.
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2. Shifters. After the initial permutation the key is broken up into to two 28
bit segments C and D which do not come into contact with each other again.
At each stage in the cipher the C and D keys are shifted circularly a number

of times determined by the controller according to the key schedule.

3. PC2. The PC2 unit takes the C and D input keys and does a selection and
permutation operation on them selecting 48 bits from the 56 bit key. The
top 24 bits of the result all come from C and the bottom 24 bits all come
from D so it is possible to view PC2 as being two separate 28 to 24 bit units.
The resulting 48 bit number is used as the key in the f-box. Again this
unit can be implemented using a channel router, in this case the channel is

reasonably small.

4. Controller. The controller generates either one or two clock pulses for the
shift registers at each stage of the cipher according to whether one or two

key shifts are specified in the key schedule.

7.2.3 Implementation of DES.

Floorplan. When we consider the amount of logic required to implement an
f-box it becomes obvious that we cannot hope to have 16 of them in a reasonable
sized array, instead we must use the same box for every stage of the cipher. We
wish to avoid bringing the key in from the bottom because at least 48 cells will
be required to input a 48 bit vector: if it is brought in from the side then no
extra cost is incurred because the unit must be at least 48 cells high anyway. We
also note that P and IP~! can be implemented in the same wiring area. This

suggests the floorplan shown in figure 7-10.

Layout of f-box. When we examine figure 7-8 it appears that large wiring areas
are going to be required for the L and R 32 bit words. It is also apparent that all
the wires are going left to right: this would imply a large waste of cell resources

since the basic cell can route right to left as well. After a little thought it becomes
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Figure 7-10: DES Floorplan.

clear that a much better layout of the f-box is possible (figure 7-11). By using
registers at the right hand side we have avoided wasting large areas transporting
L and R through the unit. By interleaving L and R we have made it extremely
easy to XOR adjacent bits and swap over prior to the next stage. We are making
use of the cell’s ability to route R right to left to bring it to the left hand side for
the initial expansion and XOR with the key. We will now consider the design of

the major f-box components in turn.

1. S-Box. We start with the S-box because it is the most complex component
and will constrain the rest of the design. In order to make use of the logic
synthesiser described in the last chapter we have to adopt an AND plane/OR
plane type layout for this unit with 6 input signals and 4 output signals. This
means that the design will be 9 or 10 cells wide depending on which logic
synthesis method is used. We can see from the floorplan that as well as
performing the logic function the S box unit must route four bits of the R
vector right to left: this is easily done using the right to left connections in
the OR-plane. All the S-boxes will be expanded to be the same width as the
one with the largest number of product terms. A diagram of one S-box unit

is given as figure 7-12.
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Figure 7-11: f-box Floorplan.

Papakonstantinou’s algorithm could not find any merges in the S-box de-
signs: this is not surprising because there were very few cases in which
several product terms always appeared together. The S-boxes were, there-
fore, implemented using the CL-ROM generator and required 32 product
terms. Although the logic block is only 9 cells wide we choose to use an
extra line of cells between each S-box unit making its effective width 10 cells
and fixing the height of the f-box at 80 cells. There are two advantages to
this: firstly by increasing the height of the wiring channels we simplify the
routing problem allowing a solution using fewer tracks, secondly the extra

width simplifies the design of the other f-box components.

The S box outputs are generated in the order in which they appear on the
opposite side of the P-box wiring channel rather than the ‘numerical’ order
of the standard. This reduces the number of tracks required to implement
the P box. Note that the right to left connection of R shown on the dia-

gram is accomplished by overlaying a routing symbol over the automatically
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generated S-box design: this is possible because the right-to left connections

are not used by the CL-ROM.

2. Expansion and Key XOR. It turns out to be easier at the cellular level to

implement both these functions within the same subunit. A block diagram

of the design is given in 7-13. Note that there are in fact three slightly

different designs for the first, last and intermediate expansion units because

of the (zo,z31) wraparound connections (table 7-13). The 80 cell path for

this wraparound connection is the limiting factor for pipelining this design.

All but the first two columns of cells in the expansion unit are overlayed on

the S-box so its effective width is only two cells: note the extra routing to

bring the last bit of K @ R to all the OR plane columns of the CL-ROM.
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Figure 7-15: L and R Register Design.

3. P-Box. Th;: P-Box is a large wiring channel which runs the whole length of
the f-box. As well as implementing the wire swapping it also realigns the
ports ready for the next stage (figure 7-14). The R vector can travel across
the top of the wiring channel very easily since no right to left connections will

be used: there is no need to inform the channel router about these signals.

4. L/R Registers XOR and Swap. The L and R registers are implemented as
master/slave flip-flops to allow to new value to be loaded while keeping the
previous value stable. The registers are broken down into 4 bit units which
occupy 10 cells (pitch matched to an S-box). Within these units the bits are
interleaved: swapping is implemented simply by a transfer between adjacent

registers. A block diagram is given in figure 7-15
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The layout of the whole unit is given in figure 7-16, note how the individual
components fit together and the signal flow allows a very high utilisation of cell

resources.

Layout of Key Handler. The layout of the key handler can follow the block
diagram exactly. We will consider the implementation of the major subcomponents

in turn.

1. PC-1. This routing converts 8, 8 bit bytes into a 56 bit number by throwing
away the most significant bit of each byte and doing some simple scrambling
of the remaining bits. It is questionable whether it is worth the overhead of
hardware implementation since it will only be used when the key is changed,
this is a relatively rare event. Fortunately, the permutation is structured in
such a way that it can be implemented using shift registers rather than a
large wiring channel [Hoornaert84]. The shift register technique is explained
in more detail for the IP channel below: its application to this channel is

slightly less straightforward.

2. Shifters. These are implemented as clocked master slave registers with a
feedback path. The shifters are pitch matched to the controller in width and
to the wiring channels in height. The number of clock pulses determines the

number of shifts. The layout is given in figure 7-17.

3. Controller. This unit can be implemented simply as a finite state machine
using the logic synthesiser. It must generate either one or two clock pulses for
the shifters on each f-box cycle: to do this it is clocked twice at the start of
each f-box cycle and cycles round a 32 state sequence. The reset signal clears
the state machine ready for the first cycle and is routed to the shift registers
to load the next key through PC-1. When reset is low the registers are
configured as two 28 bit circular shifters. In this case Papakonstantinou’s
algorithm provides a slightly better solution that the ROM generator. A
small amount of manual routing is necessary for the feedback terms: the

generator could easily be extended to do this automatically. Note that the
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Figure 7-17: Shifter Layout.

layout (figure 7-18) could be optimised by using unused multiplexors within

the logic array to provide the feedback connections.

4. PC-2. This unit is implemented using the channel router: it performs a
permutation and selection operation on the shifted 56 bit key to generate a
48 bit key for the f-box. Since only 48 bits are used some of the ports on the

left of this wiring channel are unconnected.

The layout of the whole unit is given in figure 7-19.

IP and IP~!. A straightforward implementation of this large wiring area would
require at least 37 cells. This large area requirement has to do with both the
permutation itself and the fact that we are implementing both /P and IP~! in
the same channel. This means that there are 64 input and 64 output ports on
both sides of a 80 cell channel heavily constraining the channel routing (there are
very few ‘free’ columns which the router could use to reorder nets). This channel
is a problem for silicon implementations of DES as well and we can borrow a
technique from [Hoornaert84],[Hoornaert88] to implement it in a reasonable width.
This technique relies on regularities in the JP permutation and replaces the large
channel with a small one and some shift registers: it has the side effect of reducing
the data rate but this is not a problem since the speed of the implementation is
constrained by the f-box circuits which are used 16 times for every input through

IP. The design is shown in figure 7-20 and the layout in figure 7-21.
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Figure 7-18: Key Control State-Machine Layout.
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Figure 7-19: Key Control Unit Layout.
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Figure 7-20: IP Design.
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Figure 7-21: IP Unit Layout.
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Table 7-5: DES Initial Permutation IP.

7.2.4 Pipelining.

The design of DES encryptor described above would be unnecessarily slow because
of the accumulated delays through the f-box. It was decided, therefore, to separate
the f-box into four pipelined stages to increase throughput. Note that the delays
within the key controller and the IP unit are relatively unimportant because the
computation within the f-box is much more complex and is repeated 16 times for
every data input and keys are changed relatively infrequently. Any reasonable

design of these units will be able to keep the f-box supplied with data and keys.

It was decided to aim for a throughput of 500,000 encryptions per second with
a constant key. To achieve this one 64 bit ciphertext word must be calculated every
2us, since the f-box unit is used 16 times for each ciphering operation partially
ciphered data must leave the f-box every 125ns. Table 7-6 shows the approximate
delays through the major f-box components (we take routing delay through one
cell as 2.7ns (the average of 3ns and 2.4ns) and calculation and output routing
delay as 10ns. We can see that some of these components must be broken up into

several pipeline stages to meet the performance objective. The last column of the
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table shows the number of stages required. Within the CL-ROM we choose to
place pipeline registers between the AND and OR planes as well as horizontally
across the array, this decouples the AND plane calculation time which is quite
high since there are 6 inputs. With pipelining between the planes as well as 3
stages across the array (two with 11 product terms and one with 10) we have a
stage delay of (m —)r+11c = 3 x 2.74+11 x 10 = 118.1ns. The ability to pipeline
these large combinational logic units is a partial compensation for the loss in speed
caused by using large numbers of two input gates rather than a single high fan in
gate. Pipelining within wiring channels is easy to provide using the function units

of the cells within the channel.

With the suggested pipelining the only stage which is close to the 125ns limit
is in the KEYXOR unit - if this proved to be a problem a slightly more complex
routing arrangement could split the 80 cell top-to bottom wraparound connection
among several of the right to left routing stages - extra pipeline stages would not be
required. The total pipeline length is 10 stages. Extra registers must be provided
at the right side of the f-box unit to store the ‘L’ vectors corresponding to the ten
‘R’ vectors at the various pipeline stages within the f-box. The pipeline registers
themselves are fairly small requiring only two cells for each master/slave register.
They are clocked using the G1 and G2 global signals since propagation delay on

the pipeline clock is an important consideration.

The time-line for the pipelining scheme is given as figure 7-22. The delay
through the f-box is 16+(10%125ns) = 20us. It seems natural to pipeline the input
and output phases through I P with this giving a total delay through the encryptor
of 60us. In applications where large amounts of data have to be encrypted the
throughput is of paramount importance so this is a reasonable design: we could
reduce the delay to around 25us by removing the extra I P pipelining at a small
cost in throughput. |
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Unit Direction | Route | Compute | Time Stages
PBOX RtoL 20 0 54ns 1
SBOX RtoL 32 0 86.4ns |1
KEYXOR 85 1 239.5ns | 2
SBOX LtoR 4 37 380.8ns | 4
PBOX LtoR 65 0 156ns | 2
Table 7—-6: Delay Through Major f-box Stages.
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Figure 7—-22: Pipelining Scheme.
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7.2.5 Performance.

The performance of DES implementations can be measured in two ways: the
number of encryptions per second with the same key and different data and the
number of encryptions per second with a different key and the same data. The
second metric corresponds to ‘key-trial’ in an attempt to break the cipher, the
first to normal use of the cipher. The present design is optimised for normal
use so we will concentrate on this problem. Table 7-7 shows figures for some
DES implementations: the figures for SUN workstations are using the UNIX crypt
function in the C library. This implementation is not particularly efficient and it
is likely that the times could be significantly improved by recoding in assembly
language and taking advantage of space time tradeoffs by using large data arrays
to compute S-box functions. The time for a single encryption is given as well as the
number of encryptions per second to show the effect of pipelining. The transputer
array figure is a notional one assuming 1000 transputers and that each transputer
has a good DES program allowing encryption ten times faster than a SUN 3/260:
it is intended to illustrate the limitations of conventional parallel computers in this
application. The time for the custom chip is taken from [Hoornaert88], this claims
to be the fastest DES chip available with a throughput of 32M bits/sec (or 500,000
64 bit words/sec). Note that this chip has extra control logic to handle the more
complex modes of DES in [NBS80] and also provides several registers for secure
storage of keys on the chip. The CAL design makes use of several optimisations
developed by the group which designed this chip. Although the CAL appears to
be as fast it should be pointed out that 3um processing technology was used in
the custom chip which would be expected to be slower than the 2um technology
on the CAL and the CAL figures are based on circuit simulations rather than

measurements on fabricated chips.

The CAL implementation of DES (including pipeline registers) requires an
array of cells 88 cells high by 90 cells wide (27 for the key controller, 60 for the
f-box and 13 for IP). This could be provided using an 6 by 6 array of 16x16 CAL
chips or a 2 by 2 array of 64x64 CAL chips. The entire DES encryptor would fit

on a single printed circuit board even with low density 16x16 chips.
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Implementation. || Encryption Time Encryptions/Second.
CAL 60us 500,000
Custom Chip 2us 500,000
SUN 3/50 0.58 2
SUN 3/260 0.22s 5
Transputer Array || 0.02s 50,000

Table 7-7: DES Encryptor Comparison.

7.3 Image Processing.

In this section we will illustrate the use of configurable logic to accelerate the 3-4
distance transform a calculation which has application in image pattern match-
ing. This discussion is based on a paper written in conjunction with Jouko Vi-
itanen [Viitanen88b] who originally suggested the problem and was involved with
the development of the fast pattern matching algorithm used. The configurable
logic implementation is compared with an implementation using a Xilinx logic cell

array and an optimised assembly language program produced by Viitanen.

In this section we shall consider one possible system architecture using con-
figurable logic consisting of a master CPU with a connected slave CL chip (or
several of them). This architecture is used with Xilinx LCA’s in the TAGIPS
image processing system [Hanninen88]. The master processor controls the con-
figuration of the CAL, sends data to it, and reads back the results. A potential
advantage of this architecture is that the system could be programmed using a con-
ventional High Level Language with a clever ‘active’ compiler [Gray88] selecting
‘inner-loop’ code sections for acceleration using the CAL coprocessor, this topic
is covered in [Viitanen88b]. At present the division between normal and CAL
processing is done manually. This architecture presents an attractive development

environment but the need to channel data going to and from the CL array through
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the microprocessor can be a bottleneck in many applications. Architectures with
high-bandwidth connections and fast memories are necessary to take advantage
of the raw power of large CAL arrays in highly parallel applications such as the

cellular automata algorithm in the next section.

7.3.1 The Sample Problem.

Our example application, the Hierarchical Chamfer Matching Algorithm (HCMA),
was first described in [Borgefors86] and fast algorithms for its calculation were
presented in [Viitanen87] and [Viitanen88a] for the three-parameter translation-
rotation problem. The advantage of HCMA is its robustness but in previous

implementations it had the disadvantage of relatively long execution times.

HCMA is a model based, template matching operation. It uses simple opera-
tions, like addition, sorting and table lookup. The main phases in the recognition
are image capture, feature detection (typically simple edge detection and thresh-
olding to a binary image), calculation of a distance image (an image where the
pixel values are proportional to the distance, or approximated distance, of the
pixel from the closest detected feature), hierarchical pyramid creation from the
distance image (quadtree, octree, or even pentatree rules can be used) and, finally,
the actual matching. Coarse matching is done at the lowest resolution pyramid,
trying every third or fourth translational position in both directions; rotation is
estimated at the same time. Finer matching is done at higher resolution levels for

a few best candidate positions.

The matching process involves transforming the model coordinates to different
geometrically distorted positions with respect to the distance image. We are con-
cerned in the practical case with three parameters: rotation and X-Y translation.
Those values of the distance image that are addressed by the distorted model co-
ordinates are picked up and accumulated. The accumulated sum is proportional
to the ‘average’ distance of the model from the ‘correct’ position under the metrics
used in the distance transform. This is a classical multidimensional optimisation

problem where the distance image values form the cost function. The reduction
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in computational load over the traditional template matching method (where the
cross-correlation function is calculated between the model and the scene) is obvious
since only additions are needed. References [Viitanen87], [Viitanen88a] show how
the explicit polar coordinate transforms can be avoided in the geometric trans-
forms. The local convergence properties of the distance image are good allowing
several levels of the hierarchical representation of the image data to be used. This

reduces the amount of data and the processing time considerably.

In this example we will improve the speed of the time consuming distance
image calculation part of the algorithm using CL acceleration. In [Viitanen88a] the
measured execution times on a TMS32010 image processing chip were 1.7 seconds
for calculating the distance image and 10 to 20 seconds/model for matching against
a 256 by 256 image with a maximum of 48 coordinate points in the model. For
practical use in robotics, the processing times should be a few hundred milliseconds
and we will show how to achieve this performance using Configurable Logic. The

next section describes the calculations which must be performed in detail.

7.3.2 The Distance Transform Calculation

The 3-4 integer distance approximation is applied in the calculation of the distance
transform (DT) used for creating the distance image. The approximation has
small errors compared to the true Euclidean distance but is sufficiently accurate
for practical use. The calculation of the distance transform involves two passes
over the binary edge image, using the method of [Borgefors86]. The calculation in
the first iteration is done as follows. Let F(x,y) be the two-dimensional discrete
image array with row index x and column index y, where F(x,y) = 0 at valid
feature points and maximum otherwise, then the corresponding distance image

value for each array position in the first iteration is:
G(:B, y) = mzn[F(xv y)’ G(x—la y)+37 G(II:, y—1)+37 G(x—l-: y-1)+41 G(w+1, y‘1)+4]

where processing is done row-by-row, in increasing x and y values. The second
iteration is similar, expect that now the input image F(x,y) is the result of the first

iteration, decreasing index values are used, and the signs of the index offsets above
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Figure 7-23: Distance Image Hardware Block Diagram.

are negated. A new search for the minimum has to be done among all the five
pixels every time the mask is moved in the image (because of the additions). This

makes the distance transform calculation fairly slow on a sequential computer.
?-23.
A block diagram of the hardware to compute the 3-4 DT is shown in figure

It contains five registers in two groups corresponding to the two mask rows. The
outputs of the registers are fed to adders which add the correct offsets. The most
important part of the circuit is the parallel comparator section which selects the

minimum of the five elements in one asynchronous, ripple-through process.
9 ~33

The structure of the comparator part of the circuit in figure is shown
in figure 7-24. This unit compares in parallel the corresponding bits of the five
pixels, marked from A to E with five bit accuracy. The most significant bit (MSB)
is marked with the highest number and the least significant bit (LSB) with zero.
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The result of the comparison ripples down from the MSB to the LSB and is used
to select the first pixel with the smallest value (several pixels may have the this
value). The circuit gives approximately constant time for the comparison from a
certain bit significance level. We could also have used faster lookahead to get a
lower time for those comparisons where the minimum value could be determined
at a high bit position but, since the host processor reads the results synchronously,

the constant time approach was chosen.

7.3.3 LCA Implementation.

Figure 7-25 shows the Xilinx LCA design. The smallest available LCA with 64
configurable logic blocks was used: as we can see, only three cells were left unused
and the routing capacity of the device was also fully used at many positions. It was
impossible to implement the selection operation completely on the 8x8 CLB LCA
and in the present design three bits of the selection are performed by connecting
three output pins together on the circuit board and using tri-state control signals
to do the selection. While this technique produces the correct answer the whole
calculation has not been performed on the LCA and this should be noted when
comparing areas. Use of this technique also makes it less feasible to reconfigure
the LCA for another algorithm. A 10x10 CLB LCA would be required to perform

the operation properly.

The total delay of the comparator is not a linear function of the equivalent gate
delays along the signal path since the LCA evaluates all Boolean functions of up
to four variables at the same speed. The performance of the circuit was estimated
using the simulator supplied by the LCA manufacturer giving a maximum value
of 250 ns for the selection of the minimum from the worst case MSB transition.

The maximum delay for one CLB was 10ns with the LCA model used.

7.3.4 CAL Implementation.

Figure 7-26 shows a ‘typical’ bit slice through the CAL implementation of the
distance transform unit. This design is different from the LCA one in that all the
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Figure 7-26: CAL Layout for Distance Transform Unit Bit-Slice.

major units are integrated into a single regular structure. The adders are at the
far left and right of the central logic. Half adders are used since we only need to
add constants - when we want to add 1 at the current bit position we would use
XNOR and OR instead of XOR and AND to generate SUM and CARRY to the
next stage. Each adder looks like a 2x2 square with a master/slave register on the
bottom and the SUM (XOR) and CARRY (AND) gates on the top. The registers
are clocked by one of the global signals (G1). Carry routing goes from bottom to
top on the left and right.

The selectors and minimum detectors are implemented in the central area,
5 signals pA ...pFE go down the unit, and another 5 isA ...isE up, pA ...pF
correspond to ‘possibly’ A through E and isA ... isE to definitely A through F
(after all bit positions have been compared). The ‘isA ... isE signals are AND’ed
with A...F and OR’ed (in the centre and far right of the design) to form a 5:1
selector and produce the result at this bit position (marked (RES)). The ovfsignal
is used to force RES high at all bit positions (corresponding to the maximum pixel

value) if all the additions overflow. The right hand side of the central area is less

ROWY

AC BC cc OVF ISA iSB IsC ISE IsD bpC
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regular since it takes advantage of extra vertical space arising from only having

one adder to save two columns of cells.

The complete Distance Transform unit is composed of 5 of these slices, all
slices are identical except for the half-adders where the logic functions for sum
and carry depend on whether 1 or 0 is being added at the present bit position.
At the top of the unit three extra rows of cells are used to route carry out signals
from the adders to the corresponding p lines thus inhibiting pixels whose values
have wrapped around after an overflow from being selected. An AND gate over
all the carry lines detects when all pixels overflow and this is used to set the ovf
signal which runs up the array with the is signals and force all result outputs to
ones (the maximum legal value). At the base of the design a row of cells is used
to invert the p signals and feed them back to the corresponding is signals. Several
is signals can be high if more than one pixel has the minimum value: the selector

will still output the correct value in this case.

This layout trades some area for increased regularity: these four extra rows
of cells could be eliminated if special MSB and LSB slices were designed. The

complete design requires 5 x 7 + 4 = 39 rows of 14 cells or 546 cells in total.

7.3.5 Implementation Comparisons.

Comparison with Xilinx LCA. The best way to compare areas with the
Xilinx LCA is by counting the control store required since this will cancel out
differences in processing technology and die size. The LCA array has 12038 bits
of configuration RAM: at 20 bits of RAM per CAL cell this represents 601 CAL
cells. Thus the LCA and CAL implementations are almost equivalent in terms of
area despite the large numbers of relatively high fan-in gates in the design. The
Xilinx design has been fitted into a single chip where the CAL design represents
an arbitrary shaped rectangle of cells. This is representative of the different ways
the two systems are intended to be used CAL designs will normally be done in a
large array built up from several chips and the comparator would represent only

a small part of the total system whereas Xilinx arrays are intended for relatively
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Figure 7-27: CAL Layout for whole Distance Transform Unit.
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small designs which fit on a single chip. The CAL design could be folded into a

squarer shape at the expense of some extra routing area.

There are three main sources of delay in the CAL design:

1. Carry Propagation. At each slice the carry signal incurs a delay of 67 + 1c,
where c is the compute delay (including routing to adjacent cell and r is the

pass through routing delay.

2. p Signal Propagation. At each slice there is a delay of roughly 7¢ + 30r (in

the worst case when the input data is high and the previous p line is low).

3. s Signal Propagation. The is signals incur a delay of 7r at each slice plus
a delay of 5¢ + 10r for the selection operation after the data arrives at the

MSB.

These three delay sources add up to 5(8c+43r) + 5¢c+ 10r = 45¢+ 225r = 1.06ps:
this is a lot larger than the 250mns reported for the Xilinx LCA. Much of this
discrepancy has to do with the way the CAL delay figures were arrived at.

The method we have used to calculate CAL delays results in a large overesti-
mate of actual circuit delays: this was intentional since it was considered prefer-
able that any uncertainty went against the CAL. There are several places in which

overestimates occur:

1. Circuit Simulation. The routing and computation delay figures for CAL
come from slow SPICE models applied to a hand extracted circuit. When
the circuit was being entered any capacitance and resistance estimates were

rounded up. These factors could account for a factor of two.

2. Computation Speed. We have taken the computation speed as constant at
10ns for all operations: in fact this is a worst case. The actual computation
speed depends on which multiplexors are used within the function unit and

is often much smaller.
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3. Routing Speed. We have assumed that the delay along a chain of inverting
multiplexors is the delay through a single multiplexor times the number of
multiplexors in the chain. The real situation is more complex since the
invertors will start to switch long before the input voltage reaches the half
way point. We would expect routing delays in a long chain of multiplexors
to be much less than our simple model predicts (the Xilinx simulator uses

an RC model of the interconnect to obtain more accurate results).

As well as the overestimates introduced by our simplistic method of delay
calculation the effects of the improved processing technology (including the use
of ‘special’ transistors, presumably with increased conductance in the switching
units as well as better design rules) and the speed ‘grading’ of LCA parts must
be considered. The Xilinx design has been in production for 2 years now and will
have been finely tuned for speed; there is still a lot of scope for speed improvement

in the CAL layout.

The CAL design is much more regular than the LCA design and was pro-
duced faster (about 2 days versus 1 week) despite the fact that it was done as
a hand layout whereas the Xilinx design used automatic placement and routing
tools. Overall, the speed of design and its regularity coupled with the slight area
advantage tend to vindicate the ‘keep-it-simple’ philosophy of the CAL system.

Comparison with Conventional Processor. The corresponding operations
on a TMS 32010 signal processor take from 29 to 37 instruction cycles of 200ns,
so the speedup factor is from 23 to 30 (for Xilinx parts). The I/O overhead has
to be added to both cases, depending on the actual implementation, so the total
time for building the complete 256 by 256 distance image can be estimated to be
about 64 ms using a fast host CPU with a 120 ns I/O cycle time. The TMS 32010

sequential implementation took more than a second.
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7.3.6 Conclusions.

This design example seems to show that the proposed configuration of a conven-
tional processor with a CAL coprocessor can offer significant speed-ups in some
important problem domains. Automatic design of this kind of multi-level logic
unit has become quite feasible with recent improvements in logic synthesis tech-
niques [Brayton86b]. While it is not expected that automatic designs will approach
the manual ones in area efficiency or speed they could still offer attractive perfor-

mance improvements over normal processors.

7.4 Fluid Flow Simulation.

Recently, much attention has been focussed on cellular automata simulations of
physical problems: [Wolfram86] contains a collection of important cellular au-
tomata papers and [Toffoli87] provides a much more approachable introduction

to the topic based on one particular cellular computer the CAM-6.

The goal of these models is to set up a ‘universe’ based on a particular cellular
automaton rule which mimics physical reality in some way and observe its evolu-
tion - this is to be contrasted with the more traditional approach in [Preston84]
where the automata are used as data-processing devices to produce desired trans-
formations in image processing. Of particular interest are the cellular automata
models for fluid flow simulation: currently a large fraction of the world’s super-
computer time is burned on this problem and cellular automata models promise
cheaper and more powerful computers for this application. Although there was
initially a degree of scepticism about cellular automata models in the physics
community a lot of work has been done on validating the cellular models in the
last few years and they have gained wide acceptance. Validation has been done
both against experimental results and by showing mathematically that the cellular
models approach known differential equations (e.g. the Navier Stokes equation)

for particular ‘regions’ of interest [Frisch86],[Salem86],[Frisch87],[Shimomura87).
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In this section we will outline the design of a configurable logic based machine for

solving such problems.

7.4.1 The Model.

The most commonly used cellular automaton rule for fluid flow simulation is called
‘hexagonal lattice gas’ and simply specifies what happens when molecules collide
on a hexagonal grid. All molecules are assumed to have the same mass and velocity:
the density of the grid (i.e. the proportion of lattice sites which are populated at
the start of the simulation) is proportional to the fluid’s Reynold’s number. An
example rule is shown in figure 7-28. In the ‘before’ step all the arrows face
towards the current site and in the ‘after’ step all the arrows face away: thus
the situations can be coded up as six bit numbers representing the presence or
absence of a particle travelling in a particular direction. Note that to model real
fluids properly the rules must obey certain physical properties (e.g. conservation

of momentum) and are symmetrical with respect to rotation and reflection.

To obtain interesting results we usually wish to place some object within the
fluid. At those sites on the edge of the object a different set of rules will be used
- e.g. particles reflect back with angle of incidence equal to angle of reflection. It
is inefficient to reconfigure the update unit when these sites are being computed
so the normal technique is to add an extra bit plane which contains ones along
the outline of the obstacles. We then use an automaton rule With 7 inputs and 6
outputs (since the obstacles do not move) specified as the normal 6 bit rule when

the 7th plane is 0 and the reflection rule when it is 1.

The rule in figure 7-28 does not use a true hexagonal grid but has approxi-
mated the hexagon on a rectangular grid using 45° diagonals: this is an acceptable
transformation in most cases and is necessary to match the structure of the RAM
memory which will hold the model points. In some cases a more accurate approx-
imation will be required, this will involve a slight increase in complexity and some

unused store in the RAM.
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Before. After.

Figure 7-28: Example Lattice Gas Collision Rule.

Another point of interest is that the ‘after’ stage in our example is not the
only one which conserves momentum - particles could also leave on the other two
diagonals. Rules which make random choices between different possibilities are
also of interest and can offer increased accuracy. While it is inefficient to add
randomisation at each individual node update other techniques such as using one
possibility on ‘odd’ lattice sites and the other on ‘even’ or using one possibility on

‘odd’ update cycles can be used and are reasonably effective.

Although the basic computation is very simple to get good results it must be
repeated on a huge grid of points (2048x2048 is not uncommon) and perhaps 10,000
iterations must be run between samples. One such cycle would involve about
42 x 10° node updates. The need for parallel processing is obvious. After enough
cycles have been run the model is divided up into larger sectors with about 64 sites
per sector, the average direction of the molecules within each sector is converted
into an arrow whose length represents the number of particles heading in the most
common direction and a diagram such as figure 7-29 (taken from [Wolfram86)) is
produced clearly showing the structure of the flow. The site data can also be used
to calculate numbers of interest such as forces on obstacles and pressures with

appropriate ‘calibration’ of the model.
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Figure 7—29: Example of Output from Lattice Gas Model.

7.4.2 Architecture.

There are several methods of organising the update computation.

1. One Processor per Site. This is the obvious method, using a hexagonal
grid of processors and communication between them to deal with particle

movement. This is not practical for real models with around 4 million sites.

2. Single Phase. In this implementation the calculation consists of both particle
movement and site computation. Enough memory is provided within the
computation unit to store the values at all sites adjacent to those whose
new values are now being computed. Each site takes the inputs for its
computation from the memory corresponding to adjacent sites (converting
arrows leaving the a;d;iacent site in the ‘after’ phase of the rule to arrows
entering this site for the ‘before’ phase). This method is very easy to use
when only a single update processor is available bt;t\the routing becomes

complicated when several updates take place in parallel (because of the need
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to store ‘before’ values for a given site after its new value is computed to

allow adjacent nodes to perform their update).

3. Two Phase. In this approach [Cloqueur87] the memory subsystem is treated
as several bit planes, the values in the planes at a particular address corre-
spond to the ‘before’ data for the corresponding site. The computation unit
performs the update and writes back the new ‘after’ value. After all sites
have been updated the memory subsystem manipulates bitplane address off-
sets to perform a separate ‘movement’ phase in which the bit planes are
‘realigned’ so that in the next computation sweep cells again have ‘before’
values. For example, to move a bit plane ‘up’ one would add an offset of
the number of pixels in a row. This assumes that memory addresses ‘wrap
around’ at the edge of the bit plane. Wrap-around is actually very desirable
in a cellular automaton system since otherwise the fact that edge sites have
no neighbours in one direction can distort the results. This approach is very
easy to implement, involves almost no performance penalty and simplifies
the design of the update unit. We will assume the two-phase approach in
this design, although, because the circuitry is reconfigurable it could also

implement the single-phase method.

Performance Goals. Before starting out on a design like this it is important to
consider the performance that one requires. Supercomputer implementations of
automata problems currently achieve 10° site updates per second so we will take
this as our goal and assume that we are working with 2048x2048 site lattices. Since
4M 7 bit words of memory is required for this size of model and 4096x4096 site
models are already being suggested we also require that the memory subsystem

be implemented using cheap dynamic RAM.

Update Unit Implementation. The first thing to consider is the best way to
implement the site update computation on a CAL. The first thing worth noting
is that the case where the ‘object’ bit plane is 1 is very simple, reflection simply

involves a swapping operation on inputs. Use of a CL-ROM seems appropriate for
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Figure 7-30: Basic Lattice Gas Simulator Architecture.

the hexagonal-lattice-gas rules when no object is present. We can integrate the
reflection unit with the CL-ROM as shown in figure 7-31, note that for clarity the

pipeline registers are not shown in this plot.

We have n = 6, m = 6, p = 32 so using the equations for pipeline stage
delay (Chapter 6) and assuming 4 product terms per pipeline stage the delay is
5% 1045 x 2.7+4 x 10 = 103.5ns. There are 8 pipeline stages in the ROM plus
one for the extra multiplexing. Use of dynamic memory suggests a pipeline tick
of 120ns to allow a memory access to occur and data be routed to the CAL in a
single cycle. We will assume that 64x64 cell chips are being used: each CL-ROM
is 11 cells high and an extra line of cells is needed to route the 7th bit plane
giving a total height of 12 cells. This allows 5 units per chip. Assuming that the
multiplexors use a fairly sparse layout 6 cells wide we have a total width of 32
(product terms)+6 (multiplexor) +18 (pipeline registers=56 cells. We still have 4
spare rows and 10 spare columns of cells on each chip for any other circuitry we
may want, e.g. wiring channels to simplify off chip routing. With 128 computation
units (using 26 CAL chips) we can do 1.07 x 10° updates per second.
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Figure 7-31: Layout of Single Update Unit.
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bits every 120ns) required a special purpose memory subsystem is necessary. We
will consider the design of one bit ‘plane’, all the bit planes can be identical. Each
bit plane must provide 4M bits of RAM and deliver 128 bits every 120ns. If we
choose memory chips which output 4 bit words then we need to access 32 chips.
We also have to simultaneously write back information from the CAL into the bit
plane memory. Given these considerations a single 4M bit plane memory could
be built from two banks of 32 cheap 16Kx4 (64K) dynamic RAM’s (figure 7-
32). Larger 4096x4096 site models are already being suggested so a version of the

system with 64Kx4 memories is also worth considering.

The addressing circuitry required is shown in figure 7-33, note that we need
to decrement the address from which data are being read by the number of stages
in the pipeline to get the write address. Each bit plane is assumed to receive the
current ‘site’ address from a global controller. Naturally, all this control circuitry

would be implemented using CAL chips to provide maximum flexibility.

7.4.3 Comparison with Previous Systems.

The configurable logic architecture differs from previous special purpose cellular
automaton machines by having many processors and using configurable ROM’s
rather than lookup tables for calculations. The main disadvantage of the lookup
technique"%tha,t the size of the RAM required grows as 2" with the number of
inputs n. RAM size and number of processors must also be fixed in advance
- you do not get more processors when the rule is simple. Cellular automaton
models with as many as 24 inputs have been suggested to increase the accuracy
of the simulations. Naturally, if the rules were completely random functions of n
variables configurable logic could do no better than lookup tables: however cellular
automata rules for lattice gas equations are very regular (this follows from basic
properties of the model such as conservation of momentum and symmetry which
are part of the physical model). We can see the advantages of the configurable
logic approach from the example above: if a RAM lookup table had been used
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then the size of the RAM would be doubled by the seventh input bit, however
with the CL implementation only a very small additional piece of logic is required.
It is likely, therefore, that despite the number of inputs in the newer rules an
implementation using relatively few logic gates will be possible. The structure of
this implementation will vary from rule to rule. In the lattice gas model of this
example rotation and reflection symmetry could be use to reduce the number of

rules from 64 to 14 [Wayner88].

With a reasonable amount of hardware the Configurable Logic system can eas-
ily outperform any conventional computer on this problem: table 7-8 compares
the expected performance of the system with supercomputer implementations and
custom chips. The first Princeton figure is a maximum per chip. There are 1500
chips in the present configuration however I/O considerations on the SUN-3 host
limit the performance per chip to 2/3 million sites/second giving an overall perfor-
mance of 1000 million sites/second. This figure is disappointing for a custom chip
and is a result of their method of organising the computation to reduce I/O band-
width and avoid the need for a special memory subsystem - 75% of the Princeton
chip area is taken up with a large shift register and there are only two update units
per chip. The Princeton chip uses 3um technology rather than the 1um technol-
ogy needed for a 64x64 cell CAL. The Connection Machine and Princeton Chip
figures come from [Wayner88), the figures for the CRAY are from [Shimomura87].
The CAM-6 and RAP systems mentioned above do not support enough lattice
sites and have much lower performances because they have only one lookup table

for site update calculation.

7.4.4 Conclusions.

We can see that the CL design is extremely cost effective providing supercomputer
performance from a system with fewer than 30 custom chips (even counting in
control circuitry) and less memory than a low end workstation. Even when the
cost of a host computer to control and display the results of the simulations is

included the system is very attractive. The use of reconfigurable chips in the
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System. Site Updates/Second r10°.
CRAY X/MP 500

Connection Machine | 1000

Single Princeton Chip | 20

Princeton System 1000
Single 64x64 CAL 40
CAL System 1070

Table 7-8: Performance on Fluid Flow Simulations.

update and control units will allow this system to evolve as the models become
more complex, extra memory planes and larger update units are both easy to

accommodate.

7.5 Summary.

The examples in this chapter have shown the suitability of configurable logic as an
implementation medium for a range of designs. The stopwatch example is typical
of small designs which could be implemented within a single configurable chip and
the DES example is typical of a design which would require a larger array built
at board level. The DES example is quite large and demonstrates the use of a
wide variety of design techniques and particularly the importance of pipelining
to reduce the effects of communication delays. The image processing example

illustrates the use of configurable logic as an accelerating co-processor as well
as allowing comparison with the Xilinx system. Finally the fluid-flow cellular
automata application shows that extremely high performance can be obtained

from configurable logic arrays in an important application.
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Conclusions and Future Work.

8.1 Overview of Thesis.

In Chapter 1 we covered the basic framework within which gate level configurable
systems are designed and suggested target applications for the configurable archi-

tecture to be developed within the rest of the thesis.

Chapter 2 then took a ‘high level’ look at the resources available to implement
configurable logic and the different ways in which they can be utilised. Metrics
were developed for measuring the efficiency of architectures and some desirable
properties of general purpose implementations were discovered. Timing disciplines

for configurable systems were also considered.

In Chapter 3 we developed the ideas of Chapter 2 and introduced thve idea
of cellular arrays. We looked at what resources should be placed within each
cel. Two main categories of resource were identified: functional and routing.
Building on previous research in the area a new cellular architecture, Configurable
Logic, was defined. Comparisons were made between the new design and previous

configurable systems.

In Chapter 4 we developed the VLSI implementation of the Configurable Logic
architecture specified in Chapter 3. The design parameters of the basic control
store/ multiplexor combination were explored in detail with several possible im-
plementations being considered. The design of input/output, memory control and

power supply systems for a silicon implementation of CAL were discussed.

265
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Chapter 5 discussed particular implementations of the configurable logic ar-
chitecture in VLSI. Firstly, the prototype CAL chip design which implements a
16x16 array of dynamically programmed cells was covered. Area predictions for
how the CAL architecture would scale with improved processing technology were
given. Secondly, a statically programmed version, the CLA or Configurable Logic
Array, in which the cellular array is configured by the second metal mask was
dealt with. Thirdly, the possible extension of the VLSI implementation of CAL

described in Chapter 4 to Wafer Scale Integration was discussed.

Chapter 6 dealt with CAD tools for the configurable logic system. The purpose
of this chapter was to show that algorithms developed for silicon compilers can
readily be adapted for cellular systems and that it should be practical to integrate

support for configurable logic into an existing silicon compiler environment.

Finally, in Chapter 7 we covered examples of the application of the config-
urable logic technology. Four example designs were covered. The first example, a
digital stopwatch chip is typical of the sort of application in which CAL could be
used as an EPLD replacement and has been implemented using several different
implementation technologies. Area comparisons were given to show where config-
urable logic fits into the design space. The second example, a DES encryptor, was
a much larger system which requires many CAL chips built into a larger array at
board level. This example illustrated the applicability of CAL to the prototyping
of ASIC’s or as an accelerator for conventional computers. The third design, a
unit for computing the 3-4 distance transform illustrated the use of CAL as an
accelerating coprocessor within a microprocessor system. The fourth design, a
sketch of an computer capable of running cellular automaton models for fluid-flow
simulation at supercomputer speeds illustrated the power of configurable logic in

an important application domain.
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8.2 Development.

At the end of this project the configurable logic architecture has been brought
to a point at which it is approaching commercial viability. It can compete with
anything currently available as an EPLD and system for prototyping ASIC’s. The
ASIC prototyping application is probably the most immediately commercial since
there is no comparable system available and a large potential market for one. The
more radical uses of configurable logic as an algorithm implementation technique
also have great potential but would require more development, particularly of CAD

tools.

There are many ways in which the CAL chip itself and the design automation
tools could be improved. Some have been suggested in this thesis. The research
part of the project has been completed: what is needed now is straightforward

engineering development towards a marketable product.

8.2.1 Idealised Silicon.

As more and more complex systems are implemented using a single silicon chip
or wafer it will become harder and harder to design systems correctly first time.
Diagnosing faults in highly concurrent large scale systems is difficult because it is
often impossible to look at internal values within the system. Testing such systems
also becomes harder as they get larger. As the density of these systems increases
the mismatch between the abilities of simulation on conventional computers and
the complexity of the design gets worse. Formal methods of validating VLSI
designs have been suggested as a means of solving the correctness problem but their
practicality is questionable because of the computational complexity of automatic
theorem proving and the difficulty of writing precise specifications of large systems.
At best they only provide a partial solution since they do not attack the testability
problem. An alternative approach is to reduce the cost of being wrong by using

dynamically programmable ‘idealised silicon’: this would allow the traditional
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iterative approach to the development of large software systems to be applied

cost-effectively to hardware.

8.2.2 Other Architectures.

This thesis has deliberately concentrated on the development of one particular
cellular architecture to the point at which it could be demonstrated to be use-
ful. However, there is a huge range of cellular architectures many of which
could be extremely important in particular applications. Exciting possibilities
such as the self-configuring and repairing computers first suggested by Von Neu-
mann [VonNeumann66] are approaching feasibility. Previous research in this area
has been hampered by the inability of conventional machines to simulate large cel-
lular arrays: Configurable Logic could be an ‘enabling’ technology allowing easy

exploration of the cellular design space.

8.3 Virtual Cells.

It is worth asking whether the allocation of cells to functions can be done dynam-
ically in the same way as memory is assigned in many conventional computers.
Ideally designers could work with an infinitely large plane of cells but only ‘active’

cells would be mapped onto physical units at any given time. There are two ways

in which this could be done.

8.3.1 Overlays.

By analogy with the programming technique in which large programs are broken
up into smaller sections which can fit in memory large cellular designs could be
broken up into smaller ones. It is easy to see ways to break up many algorithms:
for example an image processing algorithm could be broken up into a series of
transformations applied one after the other. Special cellular designs for individual

transformation processors would correspond to ‘overlays’ and sub-results could be
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Page Table
Chip Chip Chip Chip
Switching System
Input Chip Chip Chip Chip
and
Output
Ports

Figure 8~1: Virtual Array Design.

stored on disk in between steps. In some cases this would involve replacing of a
pipelined computation with a sequential series of computations. A system which

allowed overlays would be a straightforward extension of the present design.

8.3.2 Paging.

In this case the replacement of ‘dead’ computation units would be done automati-
cally. We will imagine that we have the structure shown in figure 8-1. Each ‘page’
corresponds to one large chip full of cells, say a 64x64 array in 1um technology.
We will assume that there are several hundred such chips giving more than a mil-
lion basic cells. Instead of being connected directly to their neighbours each block
edge is joined to a switching system capable of arbitrarily connecting their edges.
We assume that computations within the cells are synchronised to a system clock.
Let us examine the additional hardware required to ‘virtualise’ this array allowing
a number of subtasks to proceed as if they had an extremely large physical array

of arbitrary shape to themselves.

8.3.3 Switching System.

The switching system has two main tasks: to connect non-adjacent chips together
to form logical arrays and to connect internal chip edges to external signals. This
second function is critical because large arrays will be very poorly utilised if I/O

wires have to be routed through intermediate chips till they reach the system edge.
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It may appear that the bandwidth required in the switching system is far
too great to be feasible because each chip edge has 64 input and output signals

switching at unpredictable times. There are three compensating factors, however.

1. Unused Signals. Many of the inputs and outputs will be unused and these

can be found and ignored by looking at the configuration information.

2. Clock Frequencies. Because of the delay through the cell’s internal switching
system the clock frequency of any system implemented using the cells will
be lower than that of the external switching system: therefore several cell
signals can be sent along one external wire in one cell clock cycle. The clock
to the cells can also be stretched to allow all inter-cell communication to
complete: clock stretching means that the cell clock does not have to be set
according to the worst case delay through the external switching system but

only increased by any required additional delay.

3. Change Transmission. In digital circuits it is unlikely that a given output
will change every clock cycle. This means that latches can be placed on all
inputs and outputs to the chips, using these latches changes in output signals
can be detected and only when they occur will communication through the

network be necessary.

Nothing has been said so far about the topology of the communication network:
because of the number of connection points (4 times the number of cells plus
external ports) it will be impossible to use a crosspoint switch or similar structure.
Topologies which grow as O(nlgn) where n is the number of connections such
as hypercubes, omega networks etc. would probably be most suitable (see, for
example, the discussion of network topologies in [Hillis85)). It would probably be
advantageous to treat connections to neighbouring chips as a special case which

did not need to use the general switching system.
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| 8.3.4 Extra Cell Hardware.

We will now turn our attention to the additional hardware required within each

cell to support virtualisation. Three conditions must be satisfied.

1. The computation must be restartable after swapping. In order to restart
the computation we require two conditions: firstly the computation must be
synchronised to a system clock - this implies that there will be a safe time
to sample internal signals when one can be confident they will not change,
secondly one must be able to save the value of all state within the array and

all signals on the periphery of the array.

2. Swapping out a section should not affect the rest of the system. This function
is provided by the latches mentioned above which reduce the bandwidth
requirements of the routing system. This latching also means that other chips
receiving inputs from the ‘swapped’ chip will not be affected since the signals
will be latched. The first condition is most easily met by saving the output
of all function blocks within the array (just saving function blocks which are
emulating latches is not enough because gates can be interconnected to form
state): this requires one extra bit of RAM per cell. In this application the
global FTEST signal is not useful so we can easily use its space to provide
this function. The third condition can also be met: we can monitor each
gate output for changes easily since we have its previous value saved to allow
computations to be restarted. A single global signal is required to check that
no gates within the block have changed: again we can use the FTEST wiring

so this will not increase cell size.

3. ‘Dead’ blocks must be identifiable. If no internal gate outputs change and
no external signals change during one clock cycle then the block is ‘dead’
and can be swapped out. This is implied by determinacy: if nothing has
changed in a clock cycle and no inputs change then nothing will change until
an input changes - at this point the cell would have to be swapped back

in. We can see, therefore, that the switching system must keep a table of
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swapped cells and check for their inputs changing: when this happens they
must be swapped back in.

8.3.5 Conclusions.

We have seen that it is possible to build a virtualisable array of cells. The major
overhead would be the switching system. Such hardware would make the ‘al-
gorithm machine’ application of cellular logic much more attractive by allowing
multiple applications to share the same physical array of cells, supplying arbitrary
shapes of cell arrays and allowing applications to be designed for cell arrays much
larger than those actually present. These advantages would substantially narrow
the usability gap between cellular arrays and Von Neumann machines and separate
cellular technology from traditional one algorithm, one job hardware accelerators.
However, it is important not to get carried away by the potential of such systems:
it is far from clear that they can be implemented efficiently. Bottlenecks in the
switching system or paging mechanism could easily remove all the performance
advantage. Determination of the potential performance of such systems and trial

implementations are promising areas for further research.

8.4 Conclusions.

At this point it seems appropriate to quote the last sentence of Shoup’s thesis

written 18 years ago [Shoup70]:

It remains to be seen whether the computer science community and/or
the commercial manufacturers will take up the banner of Programmable
Logic. Hopefully, this dissertation has provided sufficient justification

for further interest in this technique.

The advance of technology over the intervening years has made the arguments for

configurable logic much stronger but at the present time there is less interest in
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programmable cellular systems than there was twenty years ago. Twenty years
ago the basic store and 2:1 multiplexor combination built from logic gates would
require about 40 transistors (about 8 gates in a master/slave shift register stage
plus another 3 in a 2:1 multiplexor and 3 or 4 transistors per gate): the same
structure built from CMOS RAM and pass transistors requires 7 (3 transistors
in the RAM, 2 pass transistors and an inverter). The transistors themselves are
more than a hundred times smaller. Configurable logic was an idea which arrived
before its time: now that its time has come it would be a pity to go on ignoring

it.
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