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At present there are two main methods of implementing algorithms:
interpretation of a data stream representing a program by an active
processing unit (software) and interconnection of active logic elements
{hardware). In one case the computation performed is dependent on
data stored in memory and in the other on the interconnection between
a set of physical devices (transistors). Both paradigms can be shouwn,
given reasonable definitions, to be essentially equivalent in terms of the
Junctions they can compute (see, for ezample, [Savage76]). In this pa-
per we will make the case for a third paradigm: Configurable Hardware
in which the interconnection between active logic elements, and hence
the function computed, is dependent on a control store.

1 Introduction

This paper describes a computing stucture that is both general purpose
and application specific. It is termed configurable hardware. We seek
to expose a novel model of computation by demonstrating implementa-
tions of non-trivial algorithms that exhibit significant cost/performance
improvements over more traditional implementations. The paper also
suggests that it may be time to reconsider a long dormant line of com-
puter genealogy [Minnick67, Shoup70] originally developed by Vonn
Neumann, among others. The proposed rnodel of computation is sup-
ported by a novel chip level architecture [Kean88] that is based on
regular arrays of very fine-grain processing elements. The overall ar-
chitecture has its origins in a confluence of observations on progress in
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Figure 1: Technology Progress

the areas of semiconductor technology, figure 1, concurrent computing,
figure 2, and algorithm implementation, figure 3.

In the first Caltech conference Moore [Moore79] restated his ‘first
law’ and drew attention to the traditional bottlenecks of the semicon-
ductor industry. We have updated his graph and added new data,
figure 1, from the emergence of various ASIC families and markets
over the recent past. What is interesting, apart from the inexorable
increases in demsity with time, is the clear emergence of an enabling
level of technology at about one thousand ‘basic’ units - bits, gates or
cells. That is, it seems that whenever a particular technology is capable
of delivering about a thousand units, an associated business moves into
exponential growth. Today the so-called EPLD technologies are at this
point, although only addressing a small applications area. However, if
historical precedent is followed, we can expect an explosive growth in
the density of such devices to the point at which configurable hardware
becomes an implementation option for relatively large systems.

With respect to concurrent execution engines, figure 2 identifies cur-
rent technology limits in chip and box level systems [Hillis85], [Seitz85].
It is interesting that, if provision of an absolute maximum of comput-
ing elements is important, then there is obviously more to be gained
with fine-grain computation where presently box level products do not
match the potential level of concurrency of application specific chips.




2 CONFIGURABLE LOGIC 3

There are many important algorithms, notably the cellular-automaton
simulations becoming popular in the physics community [Wolfram86],
which require such fine grained concurrency and it is conjectured that
configurable hardware products will allow exploitation of appropriate
chip level technology and redress the imbalance between hardware and
software with fine-grained programmable computation.

Finally, figure 3 is a crude summary of the options facing an en-
gineer with a specific applications problem. The purpose of the fig-
ure is to draw attention to some of the less obvious implementation
options: in particular, the routes to configurable hardware designs.
This paper shows ‘existence proofs’ for both routes identified in the
figure. The performance multipliers, based on [Culloch88, Efiand88,
Viitanen88], only indicate approximate relativities. The figure also
highlights a potential for a revival of interest in the general purpose
cellular-automaton computers suggested by [VonNeumann66]: while
the cellular architecture described here cannot directly offer all the ca-
pabilities he foresaw it can provide the basis of a powerful testbed for
new automata designs. If his insights on cellular automata carry the
same weight as his early work on computing, we may see the revival of
a major branch of computer architecture hand in hand with a major
standard parts industry based on configurable hardware.

In this paper we describe a general fine-grained architecture, Con-
figurable Logic and a specific implementation, Configurable Array Logic
(CAL) currently under evaluation. Using this implementation we show
how two significant applications can be mapped onto the architecture
and give performance predictions for the implementations.

2 Configurable Logic

The basic configurable logic structure is a rectangular array of identical
cells with the same orientation and nearest neighbour connections, fig-
ure 4. Each cell has a simple function unit and a permutation network.
Non-local connections must be routed through intermediate cells. A
range of such architectures is possible according to the complexity of
the function unit and routing network within each cell. The choice of
this basic structure is dictated by a basic property of VLSI: planarity.
In this paper we will consider only rectangular cells but other geome-
tries are possible. Cellular structures have the important properties
of having a single resource (cells) and infinite expandability by using
multi-chip arrays.

The key design decision behind the CAL architecture was to min-
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Figure 2: View of Concurrency

imise the complexity of the basic repeating cells. This produces a large
array of small cells rather than the smalil array of large cells [Xilinx86].
Thus, building blocks for particular algorithms are formed from an ag-
gregate of underlying cells rather than a subset of a larger unit. This
reduces the variance on the efficiency of implementation of different
designs.

3 The Configurable Array Logic Design

3.1 Routing Network Design

The routing network provides one bit wide input and output conmec-
tions between each cell’s North, South, East and West neighbours and
its own function unit inputs and output. A fundamental problem with
having only nearest neighbour connections is that propagation delay
increases quickly for long wires. This problem is particularly severe in
the case of clock wires and special measures have been taken to over-
come it: two global signals are routed to all cells in the array without
passing through any multiplexers. These signals are intended to be
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Figure 4: Basic Structure

used as clocks by user designs. This has the useful side effect of freeing
a large number of connections for use by data. These global signals
are often used to clock pipeline registers implemented using the cell’s
latch function within user designs. The routing structure is shown in
figure 5. Note that because every output has its own multiplexer there
Is no possibility of one connection through the cell ‘blocking’ another
as can happen in ‘wiring-channel’ like architectures.

An additional global output signal FTEST allows users of the sys-
tem to monitor the output of any cell function block within the array
for debugging purposes without the problem of routing it to the edge.

3.2 Function Unit

Given that we are using a two input function unit to minimise cell
complexity we choose to minimise the number of function blocks re-
quired by making any 2 input 1 output combinational logic function
implementable within one cell. The present design provides 4 kinds
of D latch as well. The ability to obtain a latch with only one cell is
important from the point of view of density.
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Figure 5: Cell Routing

A block diagram of the function unit within each cell is given as
Figure 6. It relies on the fact that all functions of two variables, X1 and
X2, can be computed by a 2:1 multiplexer (marked F in the diagram)
which selects Y2 if Y1=1 and Y3 if Y1=0 [Chen82]. Note that the
entire cell function is implemented by multiplexers and memory cells:
both of these structures elegantly exploit the imperatives of the MOS
medium.

4 Case Studies

4.1 Data Encryption Standard (DES) Example

DES [NBS77] is a substitution cipher on 64 bit binary vectors based
on a 56 bit key. In 1980 the standard was updated with several new
modes of operation intended to make key search more difficult [NBS80]:
the unit described here implements the original Electronic Code Book
(ECB) mode. The key inner-loop code where acceleration is critical is
common to both standards.

The detailed design of the DES encryptor is presented in [Kean88]:
here we will be content with presenting the cellular design for the f-
box unit which performs the inner loop computation. The floorplan is
given in figure 7 and the cellular layout in figure 8. In this diagram
the grey boxes are individual cells, the black boxes within the cells
represent ‘active’ function units. At lower scales the function being
computed by each cell and port information would also be printed.
Note that the pipeline registers mentioned below are not shown in this
layout, pipelining is extremely easy to provide and consists simply of
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Figure 6: CAL Function Block Design

extra columns of cells each of which implements a D latch, the registers
are omitted to allow the layout to be presented on a single page at a
reasonable scale.

The performance of DES implementations can be measured in terms
of the number of encryptions per second with the same key and differ-
ent data. It was decided to aim for a throughput of 500,000 encryptions
per second with a constant key. To achieve this one 64 bit ciphertext
word must be calculated every 2us, since the f-box unit is used 16 times
for each ciphering operation partially ciphered data must leave the f-
box every 125ns. This is achieved using an 10 stage pipeline within
the f-box. Table 1 shows figures for some DES implementations: the
figures for workstations are using the crypt function in the UNIX C
library (this implementation is not particularly efficient). The time for
a single encryption is given as well as the number of encryptions per
second to show the effect of pipelining. The time for the custom chip is
taken from [Hoornaert88], this claims to be the fastest DES chip avail-
able with a throughput of 32M bits/sec (or 500,000 64 bit words/sec).
Note that this chip has extra control logic to handle the more complex
modes of DES in [NBS80] and also provides several registers for secure
storage of keys on the chip. The CAL design makes use of several tech-
niques developed by the group which designed this chip. Although the
CAL appears to be as fast it should be pointed out that 3um process-
ing technology was used in the custom chip which would be expected
to be slower than the 2um technology used for the CAL. The CAL

figures are based on worst case circuit simulations of cell computation
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Figure 7: f-box Floorplan
Implementation Encryption Time | Encryptions/Second
CAL 60us 500,000
Custom Chip 2us 500,000
Workstation (SUN 3/50) | 0.5s 2
Workstation (SUN 3/260) | 0.22s 5

Table 1: DES Encryptor Comparison

and routing delays rather than measurements on fabricated chips (now
under test).

The CAL implementation of DES (including pipeline registers) re-
quires an array of cells 88 cells high by 90 cells wide (27 for the key
controller, 60 for the f-box and 13 for I P). This could be provided
using a 6 by 6 array of 16x16 (prototype) CAL chips or a 3 by 3 array
of 32 x 32 (volume part) CAL chips [Algotronix88].

4.2 Fluid Flow Simulation

|
Of particular interest are the cellular automata models for fluid flow
simulation. The goal of these models is to set up a ‘universe’ based
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on a particular cellular automaton rule which mimics physical reality
in some way and observe its evolution. Although there was initially a
degree of scepticism, recent work on validating the cellular models has
gained them wide acceptance [Frisch86],[Wolfram86],(Frisch87],[Fu87].
In this section we outline the design of a configurable logic based ma-
chine for solving such problems.

Hexagonal Lattice Gas Model The most commonly used cellular
automaton rule for fluid flow simulation is called ‘hexagonal lattice
gas’ and simply specifies what happens when molecules collide on a
hexagonal grid. All molecules are assumed to have the same mass and
velocity: the density of the grid (i.e. the proportion of lattice sites
which are populated at the start of the simulation) is proportional to
the fluid’s Reynold’s number. An example rule is shown in figure 9.
In the ‘before’ step all the arrows face towards the current site and
in the ‘after’ step all the arrows face away: thus the situations can
be coded up as six bit numbers representing the presence or absence
of a particle travelling in a particular direction. Note that to model
real fluids properly the rules must obey certain physical properties
(e-g. comservation of momentum) and are symmetrical with respect to
rotation and reflection.

To obtain interesting results we usually wish to place some object
within the fluid. At those sites on the edge of the object a different set
of rules will be used - e.g. particles reflect back with angle of incidence
equal to angle of reflection. It is inefficient to reconfigure the update
unit when these sites are being computed so the normal technique is
to add an extra bit plane which contains ones along the outline of the
obstacles. We then use an automaton rule with 7 inputs and 6 outputs
(since the obstacles do not move) specified as the normal 6 bit rule
when the 7th plane is 0 and the reflection rule when it is 1.

Although the basic computation is very simple, to get good results
it must be repeated on a large number of grid points (2048x2048 is
not uncommon) and perhaps 10,000 iterations must be run between
samples. One such cycle would involve about 42 x 10° node updates.
After sufficient number of cycles have been run the model is divided up
into larger sectors with about 64 sites per sector, the average direction
of the molecules within each sector is converted into an arrow whose
length represents the number of particles heading in the most common
direction and a diagram (see, for example, [Wolfram86]) is produced
clearly showing the structure of the flow.
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Figure 9: Example Lattice Gas Collision Rule

Architecture The system described here is modelled after RAP1
[Cloqueur87]. The memory subsystem is treated as several bit planes,
figure 10, the values in the planes at a particular address correspond
to the ‘before’ data for the corresponding site. The computation unit
performs the update and writes back the new ‘after’ value. After all
sites have been updated the memory subsystem manipulates bitplane
address offsets to perform a separate ‘movement’ phase in which the
bit planes are ‘realigned’ so that in the next computation sweep cells
again have ‘before’ values. For example, to move a bit plane ‘up’ one
would add an offset of the number of pixels in a row. This assumes that
memory addresses ‘wrap around’ at the edge of the bit plane. Wrap-
around is actually very desirable in a cellular automaton system since
otherwise the fact that edge sites have no neighbours in one direction
can distort the results.

Update Unit Implementation The first thing worth noting is that
the case where the ‘object’ bit plane is 1 is very simple, reflection simply
involves a swapping operation on inputs. The update unit is composed
of an automatically generated logic block (termed CL-ROM) for the
general case plus some wiring area to deal with the simpler reflection
case.

There are 8 pipeline stages in the CL-ROM plus one for the extra
multiplexing. Use of dynamic memory suggests a pipeline tick of 120ns
to allow a memory access to occur and data be routed to the CAL in
a single cycle. We will assume that 32x32 cell chips are being used.
With 128 computation units (using 104 CAL chips) we can do 1.07x 10°
updates per second.

4.3 Comparison with Previous Systems

The configurable logic architecture differs from previous special pur-
pose cellular automaton machines, e.g. CAM-6 [Toffoli87] and RAP1
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Figure 10: Basic Lattice Gas Simulator Architecture

System Site Updates/Second x10°
CRAY X/MP 500

Connection Machine 1000

Single Princeton Chip | 20

Princeton System 1000

Single 64x64 CAL 40

CAL System 1070

Table 2: Performance on Fluid Flow Simulations
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[Cloqueur87], by having many processors and using configurable ROM’s
rather than lookup tables for calculations. The main disadvantage of
the lookup technique that the size of the RAM required grows as 2"
with the number of inputs n. RAM size and number of processors must
also be fixed in advance - you do not get more processors when the rule
is simple. Cellular automaton models with as many as 24 inputs have
been suggested to increase the accuracy of the simulations. Naturally,
if the rules were completely random functions of n variables config-
urable logic could do no better than lookup tables: however cellular
automata rules for lattice gas equations are very regular (this follows
from basic properties of the physical model such as conservation of
momentum and symmetry).

We can see the advantages of the configurable logic approach from
the example above: if a RAM lookup table had been used then the
size of the RAM would be doubled by the seventh input bit, however
with the CL implementation only a very small additional piece of logic
is required. It is likely, therefore, that despite the number of inputs
in the newer rules an implementation using relatively few logic gates
will be possible. The structure of this implementation will vary from
rule to rule. In the lattice gas model of this example rotation and
reflection symmetry could be used to reduce the number of rules from
64 to 14 [Wayner88].

With a modest number of chips the Configurable Logic system can
easily outperform any conventional computer on this problem: table 2
compares the expected performance of the system with supercomputer
implementations and custom chips (the CAM-6 and RAP1 cellular au-
tomaton machines have much lower performance because of their single
update unit). The first Princeton figure is a maximum per chip. There
are 1500 chips in the present configuration, however 1/O considerations
limit performance to 1000 million sites/second. The Connection Ma-
chine and Princeton Chip figures come from [Wayner88], the figures for
the CRAY are from [Fu87]. This is a very gross comparison because the
cell update computation is organised in different ways in each system
and there are vast differences in implementation technology, however,
they do represent the state of the art.

5 Prototype CAL Chip

The prototype chip contains a 16x16 array of cells and has a core (i.e.
before pads) symbol size of 4817 by 4596um in 2um double metal
CMOS. It is a cut down version of a 32 x 32 cell design for safer
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prototyping. All peripheral signals from the array were brought out
to pads and, after taking into account power, programming and the
global G1,G2 and FTEST signals the chip fits exactly into a 144 pin
Pin Grid Array (PGA) package.

The control store on the prototype chip is set up to look like a
long shift register and the chip is programmed by shifting in a serial
data stream. This data is generated automatically from an ‘assembly-
language’ textual format where every cell function and multiplexer
source and sink is declared explicitly. A suite of CAD programs which
produce this textual format is described in [Kean88].

At time of writing, the prototype chip has been tested to the point
of demonstrating full core functionality as defined in [Kean88), and a
counter implemented using the cells has operated succesfully at 50MHz,
which was the limit of the available test equipment.

6 Conclusions

In this paper we have demonstrated that significant algorithms can be
implemented in Configurable Hardware with potentially large improve-
ments in performance and reduction in cost. However, underlying all
of this is a very general paradigm for computation in which parts of
algorithms are mapped into hardware by active compilers. The CAL
array represents a first step along a path which blurs the distinction
between hardware and software. In the past hardware has been re-
garded as being completely fixed, with configurable hardware it can
be restructured for a given algorithm. We can expect the rate of con-
figuration change to increase, as new programming learning curves are
climbed, leading perhaps to the self-configuring, fault tolerant systems
envisioned by [VonNeumann66].
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