CONFIGURABLE HARDWARE:
TWO CASE STUDIES OF MICRO-GRAIN
COMPUTATION. :

Tom Kean

University of Edinburgh.

John Gray

European Silicon Structures Ltd.

Abstract

This paper describes a new VLSI architecture - Configurable Array Logic
(CAL) which, at its lowest level, can be programmed electrically to imple-
ment any circuit composed of gates. At higher levels the technology provides a
medium for the direct implementation of algorithms. It particularly addresses
systolic and cellular automaton algorithms where the basic computational el-
ements perform computations unsuited to conventional processors.

1 Introduction.

In their seminal paper [1] Foster and Kung argued for a computer architec-
ture based around the classic Von Neumann processor and memory but with
a number of special purpose VLSI chips added to the bus. These chips would
implement systolic algorithms to provide high performance computation of
important functions such as pattern matching, fast fourier transform and sort-
ing. Foster and Kung describe a methodology for the implementation of such
chips based on careful algorithm design and simplified and formalised layout
techniques. Despite the considerable potential performance advantages of this
architecture it has not been succesfully adopted in any common computer de-
sign to date. Commercial designers have not been able to justify the large
design cost of many special purpose chips, all of which would require different
support from applications programs in order to function effectively. ,

In this paper we will present an alternative approach to the implementa-
tion of systolic algorithms within a conventional computer system:; instead
of a number of special purpose systolic chips a single configurable comput-
ing surface is provided. This architecture is termed Configurable Array Logic
(CAL) because it is best viewed as a reconfigurable hardware implementation
style: that is, algorithms are programmed by specifying connections between
active logic elements, via a programmable switching structure, rather than as
instruction data to be interpreted by processing units. The advantage of this
is that the programmable structure can implement bit level systolic algorithms
unsuited to arrays of conventional processors.

This approach is illustrated by direct conversion of two well known al-
gorithms previocusly implemented in special purpose silicon ([1]; [2]) to the

1

2 ARCHITECTURE. 2

t l t ! t !

lCell ,_{Cell |1 Cell -
Function Function Function
Unit Unit Unit
1 } i } i {
—J1Cell | Cell - Cell .
Function Function Function
Unit Unit Unit
] } i] { I
-] Cell | 1Cell | Cell "
Function Function Function
Unit Unit Unit

Figure 1: Basic Structure. L

programmable structure. The ease with which this transformation can be
done suggests that the programmable structure is suitable for use as a general
purpose systolic coprocessor.

2 Acrchitecture.

The basic configurable logic structure is a rectangular array of identical cells
with the same orientation and nearest neighbour connections (figure 1). Each
cell can compute any logic function of two variables or a simple D type latch
and route the result to any neighbouring cell. It can also support all ‘useful’
permutations of input and output neighbour connections. As well as neighbour
connections each cell has 2 global input signals; G1 and G2 which can be used
as a two phase non-overlapping clock and car be programmed to drive a single
global output signal, FTEST. FTEST is intended to support debugging of
user designs by allowing internal signals to be rmonitored. Arbitrary sized
arrays of cells can be built up using multiple chips at the board level: the chip
boundaries are transparent to user designs. .

More detailed description of the CAL architecture is presented elsewhere [3,
4, 5]. Alternative configurable architectures are described in [6] [7].

3 CAL IMPLEMENTATION, 3

3 CAL Implementation.

At present a prototype CAL chip implemented in 2um double metal CMOS
is available. This chip contains a 16x16 array of configurable cells and is
packaged in a 144 pin PGA package. A comunercial version of the chip is under
development in 1.5um CMOS which will contain a 32x32 array of cells [8]. This
chip will also come in a 144 pin package: a novel pad sharing scheme is used to
allow all 32 inputs and outputs on each side of the array to communicate with
neighbouring chips. Communication to non-CAL chips takes place at normal
logic levels and has no special timing requirements. .

CAL chips are programmed by writing into a static RAM which controls
the configuration circuits. In the initial version of the chip this RAM appears
to the outside world as a long shift-register and programming is via a serial
data stream. Future versions of the chip will provide normal address decoding -
allowing the control RAM to be mapped into the memory of a host computer.

4 Systolic String Matching.

The systolic string matching algorithm of Foster and Kung [1] is a classic
example of a linear systolic array. In this section we will convert the VLSI
layouts of the original paper into an equivalent configurable logic design.

In order to implement the string matching algorithm two functional cells
must be designed: the one bit comparator and the accumulator. These cells
are then arrayed as shown in figure 2 (this figure is based on one ia [1]).

The comparator computes the following function: p,,, ~ Pins Sout — Sin
Wour +— Win-(Pin = 8iz). The variables p and s represent single bits of the
pattern we are matching against and the string respectively, w indicates that
the match has been sucessful up to this bit position. The cellular layout
is shown in figure 3: on this diagram the grey boxes represent individual
cells within the array, the black box in the centre of some cells represents the
function unit, its two inputs are on the left and right hand side and its output
comes from the centre. The function being computed is printed at the top left
hand corner of the grey box. Black lines represent conmnections through the
routing structure, in some cases the label G1 or G2 is printed beside the left
function unit input (the clock line when the function unit implements a latch)
to indicate it is being driven by a global signal. Note that this unit is designed
to allow a one cell vertical overlap with the adjacent unit in the array.

The accumulator computes the following functions: A, — Aoutr in — Qoues
TEMPX g + min Ay — Meuyy Ain + TEMP.(Q, + win) — TEMP. The
state variable TEM P indicates that so far there has been a match up to this
character position, m is the result, X is used to mark the end of the pattern to
initialise TEM P, @ allows wild card matching at this position, w indicates a
succesful character match at this position. ,

The overall string matcher is composed of an array of these two cell types,

¢4 SYSTOLIC STRING MATCHING.

sle{a{al oz e
| 1 ! |
Jade[qa[qael”
| ! ! l
Jafdada[qa][”

l } | !
lw w lw lw
A—- — — ma— —
N— E |}« E | E I E |}
| g 7 R— bt ot vl f—

Figure 2: Systolic String Pattern Matcher.

Figure 3: One Bit Comparator Layout.

5 BIT SERIAL MULTIPLICATION. 5

WIN

' Figure 4: Accumulator Lé.yout.

the comparator cells on the top are slightly different because there is no wy,
from previous comparators. Figure 5 shows a 3 bit 4 stage comparator imple-
mented in a 20x8 array of cells: it is obvious that reasonable sized comparators
could easily be implemented in a multiple chip array.

5 Bit Serial Multiplication.

Implementation of multiplication is arguably the most critical component of
most hardware Digital Signal Processing systems. In this section we will illus-
trate the implementation of a pipelined bit-serial multiplier using configurable .
logic. The multiplier design is based on that used in the FIRST silicon com-
piler [2] allowing comparison of the two implementation styles. The imple-
mentation of the multiplier also illustrates the potential to build a complete
library of FIRST primitives in configurable logic allowing nnplementatlon of
FIRST DSP designs using the configurable technology.

In many applications (e.g. fixed response FIR filters) the multiplier coef-
ficients are parameters which are fixed or change much less frequently than
the multiplicand data. In the case of a VLSI multiplier it is still necessary to
support variable coefficients in order to increase the range of usefulness of the
chip but in a configurable logic implementation it makes much more sense to
write a fixed coefficient multiplier generator (i.e. a program which can generate

5 BIT SERIAL MULTIPLICATION.

Matcher Layout.

String

5

igure

F

5 BIT SERIAL MULTIPLICATION. 7

fixed coeflicient multiplier designs for particular coefficients) and reconfigure
the chip as necessary. : .

Note that this is an example of a general technique: analogous techniques
are often used for computation expensive processes on conventional computers.
For example, the GOALIE program for artwork analysis of integrated circuits
generates a program for a particular set of design rules which is then run on
input data rather than using a parameterised program capable of handling
general design rules. This allows conditionals to be eliminated within key
inner loop code which, combined with loop unrolling and other transforms
provides a factor of two speedup [10]. This technique is central to the efficient
use of configurable logic in many applications and it is conjectured that in
many cases it can recover much of the area/time penalties over conventional
hardware incurred by the programming circuitry. _

The FIRST multiplier uses a modified Booth algorithm and the block di-
agram of a single stage is shown in figure 6. Data and control signals are fed
from right to left through the stage with 3 bits of delay, requiring 6 latches
per signal. The block LATCH_AND_COEFF is concerned with latching the
coeflicient which is fed in bit serially like the data. A latch signal is shifted
in in parallel with the coefficient which when high causes the coefficient bits
to be latched into the recoder unit prior to multiplication. The block labelled
LATCH-AND.RECODE decodes three bits of the coefficient according to to
table 1 and generates control signals for the selector and the programmable
adder/subtractor (ADDSUB). The block labelled SELECTOR outputs 0,a or
2a to ADDSUB depending on the control inputs (zq,z,,z,), a and 2a are
available on the three bit delay line DATA _LINE. The block C1_LINE is con-
cerned with an initialisation signal. ADDSUB is a programmable carry save
adder/subtracter with sign extension and settable carry, it adds the appropri-
ate value to the current partial product sum pps and passes the result to the
next stage. .o

Fixed coefficient multipliers can be much smaller and faster than vari-
able coefficient multipliers, the savings are greatest when a recoding scheme
is used since the recoding can be chosen to minimise the number of stages
where addition and subtraction are required. In many cases fewer than half
the stages will require adders or subtractors [9]. In a fixed coefficient design
we can eliminate the LATCH_AND_COEFFICIENT, LATCH.AND RECODE
and SELECT blocks. We can also replace the complex programmable block
marked ADDSUB with a simple carry-save adder or subtractor or eliminate
it entirely depending on the coefficient bits for a given stage. Thus at each
stage of the multiplier we replace a single complex design with one of a num-
ber of much simpler designs selected automatically by a multiplier-generator
program according to the coefficient. The fixed coefficient stages have approx-
imately 1/4 the hardware of the programmable stages and are considerably
faster because the critical path is much smaller.

A layout of a ‘typical’ stage in the multiplier is shown in figure 7: this
consists of delay elements and a carry save adder with presettable carry. This

6 CONCLUSIONS. 8

biv1 | b; | b;_, | Operation

0 010 PP —(1/4)PP

0 01l1 PP — (1/A)PP +a
0 1]0 FP —~ (1/A)PP +a
1] 1|1 PP — (1/4)PP +2a
1 0|0 PP — (1/4)PP — 2a
1 011 PP «— (1/A)PP —a
1 110 PP —(1/4)PP —a
1 101 PP «— (1/4)PP

Table 1: Multiplier Recoding.

stage design corresponds to the operation PP «— (1/4)PP +a in the recoding,
table 1. The otker operations in the table are computed similarly by substitut-
ing a subtracter and taking the 2a signal from after the third delay element on
the data input as required. Since two bits of coefficient are dealt with in each
stage the number of stages required is half the number of coefficient bits. The
first and last stage designs in the array are slightly simpler than the general
stage. S oo

6 Conclusions.

A novel approach to implementing systolic algorithms for important applica-
tions within a conventional computer has been described. Instead of providing
a variety of special purpose chips a single fine grain computing surface is used
which can be configured to emulate arbitrary gate level circuits. Many systolic
algorithms typically implemented in silicon can easily be mapped onto this
surface. This mapping is illustrated for two well known algorithms.

6 CONCLUSIONS.

latch — — latch
LATCH_AND.COEFF
coeffl —- coefl
1L B, |5 E’H-l
LATCH_AND_RECODE,|
JETIRED JEX
data — DATA_LINE — data
SELECT
ﬁmt
. — C1_LINE Ll
/- |PP finit lsign extend
ADDSUB
PPS —i | pps out

Figure §: Serial Multiplier Stage - Block Diagram.

Figure 7: Multiplier Stage Layout.

REFERENCES 10

References

(1]

2]

[

[10]

M.J. Foster and H.T. Kung. The Design of Special-Purpose VLSI
Chips. IEEE Computer, January 1980, pp 26-40.

Peter Denyer and David Renshaw. VLSI Signal Processing: A Bit-
Serial Approach. Addison Wesley, 1985.

Tom Kean. Configurable Logic: A Dynamically Programmable Cel-
lular Architecture and its VLSI [mplementation. PhD Thesis. Uni-
versity of Edinburgh, Dept. of Computer Science, 1989.

J.P. Gray and T.A. Kean. Configurable Hardware: A New Paradigm
for Computation. To Appear in Proc. Decennial Caltech Conference
on VLSI, Pasadena CA, March 1989.

Jouko Viitanen and Tom Kean. Image Patiern Recognition us-
ing Configurable Logic Cell Arrays. To Appear in Proc. Computer
Graphics International, Leeds UK, June 1989.

R.C. Minnick. A Survey of Microcellular Rcscarch J. ACM,
14(2):203-241, April 1967.

Xilinx Inc. The Programmable Gate Array Design Handbook, San
Jose, CA., 1986. -

Algotronix Ltd. CAL102 Preliminary Data Sheet. Edmburgh UK
1989.

R.F. Lyon. Two’s Complement Pipeline Multipliers. IEEE Trans-
actions on Communications, April 1976

Thomas G. Szymanski and Cristopher J. Van Wyk. GOALIE: A
Space Efficient System for VLSI Artwork Analysis. Proc. Interna-
tional Conference on Computer Aided Design, 1984.

