
Secure Configuration of Field Programmable Gate
Arrays

Tom Kean

 Algotronix Consulting, PO Box 23116, Edinburgh EH8 8YB, United Kingdom
tom@algotronix.com

Abstract. Although SRAM programmed Field Programmable Gate Arrays
(FPGA's) have come to dominate the industry due to their density and per-
formance advantages over non-volatile technologies they have a serious weak-
ness in that they are vulnerable to piracy and reverse engineering of the user
design. This is becoming increasingly important as the size of chips - and
hence the value of customer designs - increases. FPGA's are now being used in
consumer products where piracy is more common. Further, reconfiguration of
FPGA's in the field is becoming increasingly popular particularly in network-
ing applications and it is vital to provide security against malicious parties in-
terfering with equipment functionality through this mechanism.

1 Introduction

In recent years, SRAM programmed FPGA's have established a major competitive
presence in market areas previously dominated by mask programmed ASIC technol-
ogy. For example, SRAM programmed FPGA's such as Xilinx's Spartan family are
being promoted for use in consumer products. At the high end FPGA's with a den-
sity of several million gates are available. Upgrading of products containing
FPGA's by downloading bitstreams in the field is an increasingly attractive option as
more and more applications are connected to networks. All of these market trends
increase the need for protection of FPGA bitstream information. Consumer products
are particularly susceptible to competition from low cost illegal 'cloned' copies. The
costs of developing a multi-million gate FPGA design are significant and, therefore,
it is desirable to prevent design reverse engineering. Unlike cloning, design reverse
engineering for competitive analysis is not, in itself, illegal. In the case of network
connected equipment it is important to protect against malicious interference with
the download process: maliciously created FPGA configurations can even cause
physical damage to the FPGA chip.

The SRAM FPGA bitstream security problem arises because an attacker can probe
the connection between the FPGA and the external non-volatile memory during
configuration and obtain a copy of the programming bitstream. Many solutions to
the problem have been proposed over the last fifteen years [1]. Most have signifi-

cantly reduced the convenience of using FPGA's or had easily exploitable security
loopholes and none have been successful commercially. A major selling proposi-
tion of antifuse FPGA vendors has been the superior design security offered by their
technology [2]. Only within the last few months has a major manufacturer intro-
duced a 'mainstream' SRAM programmed FPGA chip with security features: Xilinx's
Virtex II [3].

2 Approaches to Bitstream Security

2.1 Ignorance is Bliss

Until the introduction of Virtex II, the advice from the major SRAM FPGA ven-
dors was that to protect against design piracy by copying bitstream information the
best approach was to configure the FPGA before the product left the factory and
maintain the configuration in the field using a battery back up when the main power
supply to the equipment containing the FPGA was switched off. While theoretically
providing a high level of security this was never a practical option for most applica-
tions due to the relatively high power consumption of FPGA chips. Battery back up
reduces the reliability of the equipment, increases its cost and requires provision for
battery replacement in the field.

The conventional approach to preventing design reverse engineering by 'decom-
piling' the bitstream was for manufacturers to keep the configuration memory layout
of the devices secret and only release it under Non-Disclosure Agreement - 'security
through obscurity'. FPGA CAD software vendors such as NeoCad nevertheless
managed to reverse-engineer FPGA programming bitstreams for the major Xilinx
devices. Recently, Xilinx has started to offer Jbits software to support dynamic
reconfiguration of mainstream devices [4] which provides an API to bitstream in-
formation. With the introduction of Jbits the 'security through obscurity' defence is
paper thin and it is only a matter of time before bitstream to EDIF de-compilers
become readily available on the internet. At the time of writing there are uncon-
firmed reports that such software is already in circulation.

2.2 Encapsulation

In October 2000 Atmel announced a secure version of their FPSLIC chip [5]. An
FPSLIC is a 'system level integration' device containing an FPGA and a microcon-
troller. A degree of physical security is achieved by packaging the non-volatile con-
figuration memory with the FPSLIC chip. This constitutes a significant inconven-
ience to would-be pirates but will not deter a professional adversary. It is relatively
easy to remove external packaging around an integrated circuit: this is routinely
done by IC vendors to support failure analysis. Once the external packaging is re-

moved it is straightforward to probe the individual IC chips and determine configu-
ration information.

A further downside of this approach to design security is that it restricts the

choices for reconfiguring the device. For example, in many systems it may be pref-
erable to share a single large FLASH memory between multiple programmable
chips. It may also be desirable to have a larger memory than strictly required in
order that multiple configurations can be stored.

2.3 User Defined Key

One of the earliest suggested mechanisms for providing bitstream security to an
FPGA is contained in a US patent assigned to Pilkington Microelectronics [6]. The
suggestion in this patent is quite straightforward: CAD software encrypts the bit-
stream prior to storing it in the serial EPROM. The encryption key used is then
loaded into a non-volatile key register built from EPROM cells on the FPGA device.
When the product is powered up in the field the FPGA can decrypt the encrypted
bitstream from the external memory using the key stored in the non-volatile on chip
register. This approach protects against both design piracy (since the bitstream
stored in the serial EPROM will only configure an FPGA with the correct key stored
in its on chip register) and reverse engineering (since the externally available bit-
stream is encrypted).

The primary disadvantage of this approach is that it requires non-volatile memory

within and hence non-standard processing of the FPGA device which increases cost.
Copy prevention also requires a different bitstream and encryption key to be gener-
ated for each device and therefore complicates the user's manufacturing flow.

A variant of the Pilkington scheme is used by Xilinx in their recently announced

Virtex II family. Instead of providing on-chip EPROM memory to store the crypto-
graphic key the key is stored in a key register with its own power supply pins. An
external battery maintains the state of this register when the equipment is powered
off. Since only the key register is battery backed up very little power is required
compared with backing up the entire configuration memory and a small watch bat-
tery is sufficient. A key-register only battery backup scheme was independently
suggested in a UK patent application filed by Algotronix Ltd. in 1999 [7].

Although the key-register only backup scheme is much preferable to backing up

the entire configuration memory it still adds cost to the system and reduces overall
reliability. Vibration and shock are of concern because even a momentary loss of
power will delete the key. Battery lifespan is affected by self-discharge and lifespan
on a printed circuit board may be less than in an environmentally protected location
such as inside a watch particularly if humidity is high. In general, provision will

have to be made for service personnel to change batteries in the field. This must be
done as preventative maintenance since any loss of battery back up power when the
equipment is lost will make the equipment inoperative.

2.4 Secure Serial Memory

Various schemes have been suggested in which a special 'secure' serial EPROM
containing encryption circuitry communicates with an FPGA containing decryption
circuitry. Such schemes are disclosed in US Patent 5,970,142 assigned to Xilinx [8]
and US Patent 5,915,017 assigned to Altera [9]. Schemes based on special secure
EPROM's can provide protection against copying the bitstream as it passes between
an FPGA and a secure serial EPROM however they have problems with other modes
of attack. In so called 'man in the middle' attacks in which an attacker interposes
circuitry under her control between the FPGA and the serial EPROM in order to
eavesdrop on and make malicious changes to information passing between the FPGA
and serial EPROM. In a 'spoofing' attack an attacker designs circuitry to 'imperson-
ate' an FPGA in order to 'spoof' the secure serial EPROM into providing information
in a form she can decrypt.

It is possible to design a secure protocol between a secure serial EPROM and an
FPGA (although the prior art references cited do not achieve this) but it appears to be
a fundamental requirement that the secure EPROM be able to determine that it is
communicating with a 'real' FPGA and not 'hostile' circuitry pretending to be an
FPGA. The most practical way of the secure serial EPROM confirming the identity
of the FPGA is a cryptographic protocol based on secret data known to the FPGA
which can be verified by the serial EPROM. Thus, effective schemes based on se-
cure memories also depend on being able to store a secret key in a non-volatile man-
ner on the FPGA.

Since there are alternative methods of providing effective bitstream security using
conventional memories given a cryptographic key stored on the FPGA there is little
reason to incur the additional inconvenience and expense of schemes based on spe-
cial secure memories.

2.5 Manufacturer Defined Key

In a scheme supported by Actel in their 60RS family of SRAM programmed FPGA's
[10] a fixed key is implanted into the FPGA during manufacture. The method of
implanting the key is not specified in the limited documentation available. This
fixed key is believed to be the same for all devices and is known to the CAD software
which creates a bitstream encoded according to the key. When the FPGA loads the
encoded bitstream it decrypts it according to the fixed key prior to storing it in con-
figuration memory.

This scheme provides security against design reverse-engineering but not against
'cloning' since every FPGA has an identical key. Further, there is an 'all the eggs in

one basket' issue in that if the fixed secret key is determined then all user designs are
affected - thus it is worth an attacker’s time to devote considerable effort to determin-
ing the secret key. The attacker's task may be made much easier by the fact that key
information is embedded in the CAD software as well as the FPGA artwork - de-
compiling or tracing software is a much easier task than reverse engineering IC
artwork.

2.6 Hardware Token Based Schemes

Another possibility which has been suggested is anti-piracy schemes analogous to the
'dongles' or hardware tokens used to protect PC software (for example, the FreeCores
proposal [11]). In these schemes a separate chip, normally a CPLD, is provided and
connected to user I/O on the FPGA. The FPGA is configured normally from a serial
EPROM and the user design on the FPGA then makes contact with the user design
on the CPLD. A challenge-response mechanism is provided so that the design on
the FPGA can determine that the design on the CPLD is as expected. For example,
the FPGA design and the CPLD design might implement identical Linear Feedback
Shift Registers, the FPGA then clocks the CPLD a random number of times and
compares its output with the output of its own LFSR. If the two do not match the
user design on the FPGA determines that it is installed in ‘cloned’ equipment and
disables itself.

The advantage of this scheme is that it requires no hardware support on the FPGA.
It relies on the fact that CPLD's are based on non-volatile memory and hence have
physical protection against piracy and attempts to extend the protection to a con-
nected SRAM programmed FPGA. However, the scheme provides no additional
protection beyond 'security by obscurity' against reverse engineering the bitstream.
Dongle based protection schemes for PC software are regularly cracked by de-
compiling the software binary and disabling the code which accesses the dongle. It
would be relatively straightforward to circumvent the piracy protection offered by
this approach using a similar technique. In general, it appears impossible to offer
strong piracy protection without reverse engineering protection.

A further disadvantage of this scheme is the cost of the external CPLD and the
FPGA resources required to implement the security circuitry within the user design.

While this approach makes some sense where piracy is a concern and the FPGA
provides no built in security it is insecure and expensive compared with schemes
based on encryption circuitry within the FPGA configuration logic.

2.7 Desirable Features in a Bitstream Security System

Based on this description of the prior art some desirable characteristics of FPGA
bitstream protection schemes are apparent.

1. The scheme should provide strong protection against both reverse engineer-
ing and 'cloning'.

2. No additional components should required on the customer board, so there
is no cost penalty.

3. There should be no effect on the reliability of the user board or need for ad-
ditional service in the field.

4. The user should not have to maintain a database of encryption keys in order
to allow for future changes to the design.

5. There should be no significant complication to the manufacturing flow for
products containing the FPGA.

6. No changes should be required to the CAD tools or design flow. In particu-
lar, no information which could compromise the security of the scheme
should be embedded in CAD tools or their supporting files.

7. The scheme should be compatible with standard CMOS processing.
8. The scheme should be based on well understood and standardized crypto-

graphic algorithms and usage modes to allow easy analysis of threats and
should not depend on 'security through obscurity'.

9. The scheme should be upward compatible with standard programming
modes and standard non-volatile memories. It should allow for design up-
grades in the field and design changes during prototyping.

3 A New Bitstream Security System

Figures 1 and 2 illustrate a new FPGA bitstream security scheme proposed by Al-
gotronix [7] which removes most of the difficulties with prior art schemes. The
scheme is based on two observations:

1. Flash memory has largely superseded EPROM: thus most modern FPGA's
are configured from non-volatile memories which can be programmed in-
system by the FPGA itself.

2. If the FPGA is configured within the FPGA customer's facility then there
are no security implications to transferring unencrypted bitstreams to the
FPGA.

Figure 1, shows the initial configuration of the FPGA within the customer facility.
This is achieved during the manufacturing of the board containing the FPGA and
involves downloading an unencrypted bitstream via a JTAG interface. The FPGA
then encrypts the bitstream based on an on-chip secret key which is unknown even to
the FPGA customer and programs it into an external in-system programmable
FLASH EPROM. Header bits on the bitstream file are used to indicate its status, for
example, insecure bitstream to be converted to a secure bitstream, secure bitstream,

insecure bitstream to be left insecure. With this scheme the FPGA CAD tool flow is
not concerned with the encryption process and there is no need for the customer to
protect or manage cryptographic keys.

This is only one illustration of how initial programming can be achieved - as with
conventional FPGA's it is expected that a variety of modes will be available. An-
other option would be to pre-program the serial EPROM's with an unencrypted bit-
stream prior to board assembly and on initial power-on for the FPGA to read in that
bitstream, encrypt it and reprogram the serial EPROM with the encrypted bitstream.
Similarly, the FPGA may be programmed by a microprocessor on the customer board
and return encrypted data to the microprocessor which the microprocessor then uses
to overwrite the initial unencrypted data in its memory system.

Figure 2 shows the situation when an FPGA is powered up 'in the field': by examin-
ing the header bits it determines that the bitstream is secure and therefore decrypts it
using the internally stored key prior to loading it into configuration memory. Al-
though the figure shows encrypted data coming from an adjacent serial EPROM it
could equally be provided by a microprocessor or another FPGA in a configuration
'daisy-chain'.

Standard ciphers operating in cipher-block-chaining (CBC) mode can be used to
implement the encryption and decryption functions. The choice of cipher is not
critical but triple-DES is a reasonable option. CBC mode removes any patterns
which would otherwise be present in highly regular data such as FPGA bitstreams, it
also provides a cryptographic checksum which can be used to detect tampering with
the file. If tampering is detected the FPGA takes appropriate action such as clearing
the configuration memory and disables FPGA output pins.

As described so far this security scheme requires a non-volatile key register within
the FPGA chip. This could be implemented using a battery backed key register as in
Virtex II, however this is not the preferred approach for the reasons outlined above.
Instead, it is suggested that laser programmed fuses are used to implant a random
key on each chip during the manufacturing process. This is a standard low-cost
option at many foundries and has been used in support of redundancy schemes for
commodity DRAM chips for many years.

Simplified Piracy Protection

An extension to the scheme outlined above [12] removes the need for laser pro-
grammed fuses and provides a high degree of resistance to reverse engineering and
piracy while maintaining a completely conventional CMOS flow.

This extension is based on the novel observation that in order to deter piracy it is

not necessary to absolutely prevent 'cloning' an FPGA design, only to make it uneco-

nomic to offer a product based on cloned FPGA's. That is, in the vast majority of
cases, the problem is that a pirate can compete with the original designer of a piece
of equipment by offering 'cloned' equipment at similar or lower cost in the market:
not that a pirate could make a small number of units of cloned equipment.

Assume that instead of a non-volatile memory containing the encryption key each

FPGA had the same encryption key embedded into the design artwork through
changes in one of the masks used in fabrication. The approach of hiding a small
amount of secret data in a much larger database is termed steganography and can be
a highly secure way of storing an encryption key given the small number of bits
involved (less than 200) and the 100's of millions of polygons in an FPGA design
database. In fact, arguably, it is harder for a pirate to determine the value of an en-
cryption key when it is hidden in this way than if it is configured into EPROM mem-
ory or stored in SRAM. This system provides strong protection against reverse engi-
neering (since the design is encrypted when it is transferred to the FPGA) but no
protection against 'cloning' (since every FPGA will successfully load the design).

Based on this analysis prior art systems came to the conclusion that each FPGA

chip should have a unique key. However, this is not necessary if the goal is to make
'cloning' uneconomic rather than impossible. Suppose there were five possible keys
and FPGA's were supplied with no markings indicating which key was in a particu-
lar FPGA. The design owner can use any FPGA since the FPGA will create an en-
crypted bitstream itself based on whatever internal key it contains. However, a pirate
using a naive approach would have to buy, on average, five FPGA's in order to find
one which would load a particular pirated design.

More sophisticated pirates might attempt to sort the FPGA's according to their key

and resell those they could not use or obtain copies of the design encrypted with all
five possible keys and choose the appropriate configuration for a particular FPGA.
FPGA manufacturers can counter these more sophisticated schemes in a variety of
ways. Firstly, keys can be used in manufacturing for a limited time and then re-
placed: in this case it may be impossible for a pirate buying 'new' FPGA's from dis-
tribution to find one that will accept a design copied from equipment in the field
which will contain an FPGA manufactured several months earlier. Secondly,
FPGA's can be supplied with different keys in different geographic areas. Thirdly,
large customers can be supplied with FPGA's with keys not supplied through 'distri-
bution'. All these approaches make it less likely that a pirate will be able to obtain
FPGA's compatible with a cloned design. Lastly, the number of possible FPGA keys
can be increased.

Each key variant will involve changes to a particular mask in the FPGA, this

represents an additional expense and inconvenience in the manufacturing flow.
However, these costs are acceptably small. High volume products will run on multi-
ple fab lines in any case and will, therefore, have multiple mask sets. Also, masks do
not last forever and must be replaced from time to time.

FLASH
Serial
EPROM

FPGA

Configuration
Circuitry

Configuration
Memory

Encryption
Circuitry

Secret Key

JTAG

Fig. 1. Initial Programming of Secure FPGA.

FLASH
Serial
EPROM

FPGA

Configuration
Circuitry

Configuration
Memory

Decryption
Circuitry

Secret Key

Fig. 2. Normal Configuration of Secure FPGA in the field

6 Summary

Lack of design security has long been the skeleton lurking in the closet of the
SRAM FPGA industry. Until recently, customers were willing to live with this prob-
lem in order to benefit from the ease of use of programmable logic. Recently, how-
ever industry trends have forced manufacturers to address the issue. Provision of
strong security technology removes one of the few remaining advantages of antifuse
FPGA's and unlocks additional areas of the ASIC marketplace.

Whereas customers may have been willing to ignore security deficiencies when
no leading supplier offered a solution now that one, albeit imperfect, system is avail-
able bitstream security is likely to become a standard, must-have, feature for all ven-
dors. Similar situations have occurred many times in the past with security tech-
nologies: for example, today, all new cars in Europe are sold with engine immobilis-
ers and all e-commerce websites offer Secure Sockets Layer (SSL) security for credit
cards.

The proposed security technology offers key advantages compared with alternative
schemes: it does not affect system reliability, it does not require additional compo-
nents, it is compatible with standard CMOS processing, it does not require support
from CAD software and it is based on standardised cryptographic protocols.

References

1. Dipert, B., "Cunning Circuits Confound Crooks", EDN Magazine, October 12, 2000.
2. Actel Corporation, "Protecting your Intellectual Property from the Pirates", presentation

at DesignCon '98. Available from www.actel.com.
3. Xilinx Inc., "Using Bitstream Encryption", in Chapter 2 of the Virtex II Platform FPGA

Handbook available from www.xilinx.com.
4. Steven A. Guccione, Delon Levi and Prasanna Sundararajan, "Jbits: A Java-based Inter-

face for Reconfigurable Computing". Proceedings 2nd Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference (MAPLD).

5. Atmel Corp., "Atmel Introduces Secure FPLSIC", Press Release, Atmel Corp, Oct 12,
2000.

6. Austin, K., US Patent 5,388,157 "Data Security Arrangements for Semiconductor Pro-
grammable Devices"

7. Algotronix Ltd., "Method and Apparatus for Secure Configuration of a Field Program-
mable Gate Array", PCT Patent Application PCT/GB00/04988.

8. Erickson, C., US Patent 5,970,142 "Configuration Stream Encryption"
9. Sang, C., et al, US Patent 5,915,017 "Method and Apparatus for Securing Programming

Data of Programmable Logic Device"
10. Actel Corp., "60RS Family SPGA's", Advanced Data Sheet. Available from

www.actel.com.
11. Kessner, D., "Copy Protection for SRAM based FPGA Designs", Application Note, Free

IP Project, http://www.free-ip.com/copyprotection.html.
12. Algotronix Ltd., "Method of using a Mask Programmed Key to Securely Configure a

Field Programmable Gate Array", Unpublished pending patent application.

