
Secure Configuration of a Field Programmable Gate Array

Tom Kean

Algotronix Ltd., PO Box 23116, Edinburgh EH8 8YB, United Kingdom. E-mail tom@algotronix.com

Abstract Although SRAM programmed FPGA's are
generally denser and faster than FPGA's programmed
using non-volatile technologies, such as antifuse and
Flash EPROM, the need to load on-chip configuration
memory on power up makes them vulnerable to piracy
and reverse engineering of the user design. This paper
discusses an attractive method of addressing this issue.

Introduction As technology and architectural
improvements allow re-programmable FPGA's to
compete in almost all sectors of the ASIC market and
begin to penetrate applications previously addressed by
DSP's and microprocessors design security becomes an
important consideration [1]. Short product lifespan and
competition from nations with less rigorous enforcement
of intellectual property rights make design piracy a threat
in many consumer applications. With multi-million gate
FPGA's being used in advanced applications the
economic value of the design programmed into them
becomes significant. As FPGA's are increasingly used in
critical computational applications, for example in
network equipment and in control systems the potential
for inadvertent or malicious alteration of the FPGA
design becomes significant - particularly in applications
involving reconfiguration in the field. For all these
reasons the security weaknesses of current SRAM
programmed FPGA's are of increasing concern.

Several desirable characteristics for a cryptographic
system to protect FPGA bitstreams can be identified: 1)
strong protection against both piracy and design reverse
engineering, 2) compatibility with standard CMOS
processing of the FPGA. 3) no complex key-
management requirements 4) compatibility with present
programming methods and CAD tools 5) no effect on the
FPGA user's product reliability 6) no additional
hardware at the board level and minimal FPGA die area
overhead

Attacks Several methods of protecting FPGA
bitstreams have been suggested in the past but they all
have major failings. Most prior art protection methods
consider a simple scenario where an attacker monitors
the wire transferring programming information from a
serial-EPROM to an FPGA (figure 1) and attempts to
pirate the design by making a direct copy of the
information. Two additional attack scenarios must also
be considered: the attacker may use a computer to

emulate the FPGA itself or interpose a computer between
the serial EPROM and the FPGA monitoring both sides
of the transaction and making malicious changes to the
signals passing between them in order to subvert the
protocol (the 'man in the middle' attack'. Prior-art
protection techniques require CAD tools to generate
different configuration information for each FPGA or an
on-chip EPROM memory [2].

Proposed Solution A secret cryptographic key can
be stored on an FPGA in many ways. One method is to
use a laser to program a set of links during manufacture.
This can be done for a few cents per die and allows each
chip to be set up with a different random key.

In-system programmable FLASH memory has largely
replaced one-time programmable EPROM storage as
FPGA configuration memory. An attractive way of
programming a FLASH serial EPROM is to download
the desired configuration into the FPGA using the JTAG
interface during manufacturing test and have the FPGA
itself program the information into the external FLASH
configuration memory. Chips such as the Triscend
CSoC family [3] which provide an on-chip
microprocessor can implement the FLASH programming
algorithm in software.

If the FPGA chip also contains encryption circuitry
which makes use of its on chip secret key (figure 2) it
can encrypt the programming information received
through JTAG as it passes through to the serial EPROM.
Thus, only encrypted information is stored in the serial
EPROM. Since this initial step occurs in the users
facility there is no need for cryptographic protection of
the programming information as it passes over JTAG.

When the chip powers up in the field it reads encrypted
programming information from the serial EPROM and
decrypts it using its on chip encryption circuitry and
secret key prior to loading it into its configuration
memory (figure 3). At this point configuration
information is protected cryptographically.

In this security method there is no need for the CAD
tools or any person to have knowledge of the particular
secret key associated with a given chip. Further: no
special processing of the chip is required, the technique
does not compromise reliability by requiring a battery to

back up SRAM memory and it is backwards compatible
with existing programming methods.

By providing strong cryptographic security to an off-chip
non-volatile memory this technique allows for secure
storage of any important information which must be
preserved after power-down. For example, the off-chip
memory can now be safely used to store information
such as private cryptographic keys for use in network
protocols such as IPSec and SSL. These standard
internet security protocols can be used to support secure
download of configuration bitstreams from the internet.
Without this ability to securely store cryptographic keys
an attacker could potentially subvert the download
security simply by obtaining access to a product in the
field and reading out the keys in its FLASH memory.

Because of the limited space available this paper has
only covered the basic principles of this security
technique: further details are available from the author.

References

[1] Actel Corporation, "Protecting your Intellectual
Property from the Pirates", presentation at DesignCon
'98. Available from www.actel.com.

[2] US Patent 5,388,157 "Data Security Arrangements
for Semiconductor Programmable Devices"

[3] Triscend Corporation, "Triscend E5 Configurable
Processor Family", Product Description, July
1999.

Serial
EPROM

FPGA
Configuration
Circuitry

Configuration
Memory

Figure 1. Attacker Monitors the Bitstream

FLASH
Serial
EPROM

FPGA

Configuration
Circuitry

Configuration
Memory

Encryption
Circuitry

Secret Key

JTAG

Figure 2. Programming FLASH EPROM during Product
Test

FLASH
Serial
EPROM

FPGA

Configuration
Circuitry

Configuration
Memory

Decryption
Circuitry

Secret Key

Figure 3. Normal Configuration of FPGA in the field

