Image Pattern Recognition
Using Configurable Logic Cell Arrays

J. Viitanen and T. Kean

ABSTRACT

A pew approach to the soiution of computation intensive problems using programmable logic cell array devices as dynami-
ally un-time reconfigurable processors is iniroduced. The applicability of the approach for real problems is demonstrated
s e case of two time-critical parts of image paticn recognition using the hierarchical chamfer maiching method. The
execalion times of the programs performing certain compuiation inensive parts of the recognition process on a normal
sequential computer and the new architecture are compared. Significamt speedups are achieved over the | ial approach
by exploiting optimisation and parallel processing at the gate level, The potential role of the approach in future computers
isdiscussed, the application development process and the required development tols are described.

Keywords: image pattern recognition, VLSI design, computer archi €, lemplate matching, parallel processing

INFRODUCTION

The availability of logic cell array devices that can be programmed dynamically at run-time has made it possible to utilise a
ww approach for computation of data-intensive tasks. These devices are primarily intended for applications where tradi-
tional two-level Field Programmable Logic Amay (FPLA) and the closely related PAL and PROM devices have been used
axeasively but are significantly more general in that arbitrary connections of gates and laiches are supported altowing much
more complex systems 10 be implemented. The run-time programmable/ reconfigurable logic cell array consists of a vola-
s block of static memory that defings the state of a switching matrix which connects the logic cell elements in the desired
configuration, just like the fusible links configure the cells in an FPLA. The logic fonction of each cell is also defined by
wlatile memory. Hereafter, this kind of device is termed CLCA (Comfigurable Logic Cell Array) to emphasise the
differences between it, the fuse-programmabic and UV-erasable PAL devices and the fixed- logic gate array devices. In this
pper we will consider two families of these devices: commercial Logic Cell Array (LCA) chips (Xilinx 1986) and a newer
achitecture called Configurable Array Logic (CAL) designed at the University of Edinburgh.

Even though the commercially available devices are not designed 1o be used in computer-type applications, their dynamic
wogrammability makes it possible to load different ‘programs’ (the configuration data) into them for executing various
. ypes of computational tasks. Thus they can be used as coprocessors within a general purpose computer for speeding up
* gecific tasks, where large amounts of data arc processed using relatively simple algorithms. The Edinburgh system has
been specifically designed with computational tasks in rmind. The typical configuration of either CLCA for computational
tasks is as & gate-level pipelined processor: but naturally any forms of parallelism which fit the device struciure can be used.
The ples that are p d in this paper deal with image pattern recognition using a temnplate matching technique.

LCHARACTERISTICS OF CONFIGURABLE LOGIC CELL ARRAYS

= 1L Background

The recently introduced CLCA is a descendant of the Field Programmable Logic Array (FPLA) devices that have been used
hryears for replacing various $S1 or MSI logic chips on a typical digital circuit board. A traditional FPLA copsists of logic
ol that can be programmed 1o perform desired logic functions by opening the fusible links at proper positions inside the
- ¢houit. These devices are limited to implementing one or more two level AND/OR logic functions of input variables,
;T!ﬂbk?mgmmmable Legic Devices (EPLD’s) which can be reprogrammed after erasure by UV light were introduced
.

356

There are two main differences between the new CLCA devices and these architectures.

1. The programming is donc using transistor switches controlled by static RAM cells. This has several important conse-
quences:
(i) The device is reprogrammable an arbitrary number of times.
(ii) The store is volatile and must be restored every time power is applied, and
(iii) The size of RAM cells limits the number of programmable connections in the device.

2. These architectures allow much more gencral interconnection structures than earlier devices. There are fundamental rea-
sons which imply that higher generality arrays rather than simply larger two lcvel arrays arc necessary to implement large
systems on a configurable architecture (Kean 1989).

1.2. The Commercial LCA Devices

The commercial LCA device is modelled after the gatc-amray architecture common in Application Specific Integrated Cir-
cuit (ASIC) designs. It consists of a relatively small number of complex logic cells separated by a wiring area. There are
two familics of these devices: the 2000 family contains 64 cells in an 8x8 grid and has been available for about two years
and the 3000 family which supplies up to 320 cclls and has just come into production. The 2000 family logic cells are
capable of computing any function of 4 variables or any two fanctions of 3 variables and a complex flip-flop. The 3000
family cells can compute functions of 5 variables or two functions of 4 and have two flip-flops: the inter-cell routing struc-
ture is also slightly more complex. Note that the amount of control store required to implement any function of n variables
increascs as 2# (since there are 22° possible functions) so with constant processing technology one could have around twice
as many 4 variable cells as 5 variable cells. Cell delays are of the order of 10ns. These devices are primarily intended as
stand alone chips to replace random logic within target systems. Complex programmable 1/O blocks are provided which are
very useful in EPLD applications, but mean that regular arbitrary sized multi-chip arrays cannot be built since the intercon-
nection structure is broken up at chip boundaries.

1.3. The Structure of the University of Edinburgh CAL.

The Configurable Array Logic (CAL) devices developed in the University of Edinburgh are radically different from the
LCA’s. The basic architecture is a cellular array with only nearest neighbour connections: thus longer connections must run
through intcrmediate cells. This makes the switching structures on long interconnections more apparent but does not neces-
sarily imply that there will be morc intervening switches than in an LCA type architecture with scparate routing facilities.
Each cell within the array can realise two-variable logic functions or simple laiches as well as providing routing support for
pass through connections.

The architecture of the CAL device is motivated by three main design goals: simf)licity. regularity and efficiency. We will
consider the implications of each of thesc in turn.

- Simplicity. Architectural simplicity means that users and, more importantly, Design Auw(naﬁon }gols ha‘ve a clean
model of the structure. Since CAL is intended 10 implement large systems most resource allocauoxf decisions v.vﬂl be made
by computer programs. This makes the provision of large irregular function units m.uch less atn-.acuve‘ such units can of‘w\
be used effectively in hand-crafted designs but cannot be used as effectively by design automation software. The situation
is similar to the CISC/RISC debate in Von-Neumann computers: compiler writers prefer a small well (!cfmcd set of fa§l
instructions. This goal also applies to the routing system where only a single kind of r.outing resource is provided. This
allows channel-routing algorithms instead of the much slower and less efficient maze routing algorithms to be used.

- Regularity. It is important thal a system 0 support high generality designs provides a completely symmetrical routing
structure. This allows sub-designs from a library to be rotated and reflected to meet global floorplanning goals.

Similarly, the system has only one resource: the cell (instead of several resources ¢€.g. logic cells, wiri.ng channels and long
lines). In a system with many resources a design can fail in several diﬁ’cren} ways (not enough logic blocl‘cs, not cpough
wiring tracks eic.) whereas in a sysiem with a single resource it is only a question of how many gel}s are required. T!Ilspm- ’
perty simplifies the design of Design Automation tools. Regularity is extended to arrays containing many C{\L chips: lhc

architecture makes the individual chip boundaries transparent at the cellular level. This allows single subum}s o be sp!n ;
over multiple chips and greatly simplifies the placement problem. This transparency is po§sib1c bu_:ause routing delays in)
celular structures are significantly higher than those in silicon designs (because of intervening multiplexers). InpuEIOutput :
pads have also been getting significantly faster and delays are smaller than normal in aray structures whqc pad§ drive only
a single input on an adjacent chip. Thus /O pads are not nccessarily a bottleneck in cellular designs (incurring a delay

357

t 1o around 3 routing multiplexers for a chip boundary crossing) and, with carefully designed circuitry, can even
shared between several signals at an array edge without excessive performance penalties.

Efficiency. Efficicncy in the use of silicon arca is central to the CAL design. It falls out naturally from the previous two
derations. Since we have a large array of very simple cells it is possible to put a large amount of effort into finding an
ient layout for the repeating unit (¢.f. commercial RAM designs).

arcay structure of the CAL device is apparent from the example design in figure 5. Apart from the nearest neighbour
¥grals there are three global signals routed to all cells in the array. Two are inputs (G1 and G2) which can be used as a
wophase non-overlapping clock in user designs; the third (FTEST) is a test signal which can monitor the function unit out-
of any cell in the array. This simplifies access to internal signals for debugging purposes. Each cell can implement any
the 16 functions of two Boolean variables or one of 4 types of D lach (D,Clk)(D’,Clk),(D,CIk"),(D’,Clk"). The routing
etwre within each cell is shown in figure 1: it approximates a full crossbar switch with unnecessary connections (e.g.
In to South Out) removed. The cell is controlled by 20 bits of RAM. Use of a multiplexer based routing structure
kes very efficient use of the control store. The present prototype device contains a 16x16 array of cells in a core symbol
st under 4817x4596um in 2um CMOS. Much larger arrays are possible: a 32x32 array in 1.5um tecnology is currently
development (Algotronix 1988) and a 64x64 array would be possible with the advanced processing technology used
gommercial SRAM’s. The architecture of the CAL chip is described in detail by Kean (1989).

X2 X1 Nout Sout Eout Wout

! 1 t t ! t
a1 [en] [Dlan] [Lar] e] [an]

v L] HiE

South In
East In
West In

Func, Out
G1
G2

Fig. 1: The CAL cell routing.

THE APPLICABILITY OF CLCA’s TO IMAGE PROCESSING

processing and image pattern recognition are fields where reconfigurable special processors could be useful. Early
processors like the Cytocomputer (Sternberg 1985) were fast pipelined processors performing a limited set of opera-
using a fixed neighborhood size. Typical functions were performed over a period of one complete image frame
al milliseconds); during this time the function of the neighborhood logic remained fixed. Many SIMD-processors
ve similar characteristics: performing fixed operations over many data items is very fast but changing programs is fairly
(because code must be propagated to each processor). In systems without a dedicated broadcast channel for code
fer programs commonly remain fixed over the time period of one image frame or window (although the programs
in each PE may be quite long). Examples of such SIMD-processors are CLIP (Fountain 1983) and the NCR GAPP
1984). Some more general purpose processors, like the Connection Machine (Hillis 1985), have similar features. All
computers typically are coprocessors controlied by a general purpose computer which takes care of program and data

ge processing is an application arca where a fast processor with a small *program store’ and slow ‘instruction feich’
pld be successful because algorithms often have loops with high repetition counts and relatively simple operations inside
loop body. Other potential target arcas include statistical simulation, and traditional vector processor applications such
ny tracing, and finite clement methods. In this paper we shall consider one possible system architecture using CLCA’s
iging of a master CPU with a connecied slave CLCA (or several of them). The master processor controls the
ation of the CL.CA, sends data o it, and reads back the results. This architecture provides an attractive develop-
5l environment but the need to channel data going to and from the CLCA array through the microprocessor can be a
eck in many applications. Architectures with high-bandwidth connections and fast memories are necessary 1o take
ge of the raw power of large CLCA arrays in highly parallel applications such as ccllular automata algorithms (Kean

358

The principal difference between the CLCA and previ llular array comp is its gate-level programming. This may
nppearwbenlimimﬁoninlhmeach‘pocm'mmﬂyexeoulevaysimpleoperaﬁms:howemuwwvuseism
Using behavioural pilati hni developed for silicon pilers we can configure the array to implement almost
anyopuaﬁmwedesire(i!i:easytoshowdma.CAmylaxe, 1| puting in the sense of Turing
machines). We could even impl a plese Von P on the CLCA if that kind of operation was
required. Traditional cellul p with their small function units are much more limited in this sense. The number of

:vailab!ecemmmcCLCAandpxwagatmdehysmlongweswiminitpmvideapracﬁcallimitonmesiuofﬂwﬁm-
tional units implemented.

'I‘hemmsevetaltypesofimagepmcessingoperationsmatcuﬂdbecmsidemdforimplemenmn’unonaCLCA,Some
obvious ones are prep ‘,tasks.likeimugesnomhillg“dﬂlsimplenmsks.edgedewcﬁon.medianﬁlwﬁng.amm
holding. Other possibilities are histogs cul hing for maximum or minimum, and similar tasks. However, in
the cop hi we are id i--gﬂnespeedupfonheseopemionsmaybequiwlowcompamdtoamam
run on a high perfo signal p or a RISC (reduced i ion set computer). This is b these operati
msosimplemudual/()omheadwiﬂbeamajorpanofﬂwexecuﬁmﬁmemdﬂlchostCPUmaybeablemmlam
the function itsclf almost as quickly as it can transfer the data to and from the cop Special p are already
avﬁhuewimml-ﬁmeexwuﬁmspeedafummyofdmusicmmsﬁngfmﬁms.

Opemimnwithhmnedimaomplexity.wlmeﬂwUOovuheadpelunmgeislower,buthrgeimagedatamampm-
cessed are better suited to the external coprocessor architecture. Examples of such tasks in the field of image pattern recog-
niﬁmarepmcmmawhing,dismncecdmlaﬁmusinsdiﬂ‘mtmwics.coudinmmufomsmd Hough transforms. This
papuwilldescﬁbetheuseof:CLCAintwoimpmamswpsofpwem gnition, the di image calculation and
hierarchical matching. The original implementation was done using commercial LCA devices but we will also describe a
CAL implementation of the distance transform unit to allow comparison. A system with a single LCA is assumed, with
logicmymconﬁgmﬁmatﬂwbegimingofex:hmk.mexmﬁonwdofmenewappmach.basedmsimu!aﬂnmof
nndesignedconﬁgmadonsofmeLCA.iscompuedwim:pmviouslymd, gram on a dard sequential signal pro-
Cessofr. '

3. THE SAMPLE PROBLEM

Our example application, the Hi hical Chamfer Matching Algorithm (HCMA), was first described by Borgefors (1988)
and fast algorithms for its calculation were p d by Viitanen et al. (1987, 1988) for the three-p ic lati

ion probl The ad g ot‘HCMAhitsmbusmhuinpwviomimplammaﬁonsithadﬂwdisadvmugeof
relatively long execution times. .

HCMAisamodelbased.wmphmumchhzopeuﬁmllnseuimpleopetmims,likenddiﬁons,mhingfor:minimum,
andoﬁ'seuddnninghm:mnmue&mmphmmﬂwmogniﬁonmimageupnm,feamdewcﬁm(qpkmy
simple edge & jon and thresholdi babimryhmse),calmlnionofadistameinngs(mhmgewhuemepixelvm
are proportional to the di or approxi d distance, of the pixel from the closest detected feature), hierarchical
pyramid ion from the di inuse(quaduee.ocuee,otevenpenmmmlescmbeused).mdﬂmny.mm
mamhing.Coarsemuchingisdoneatﬂ:elowmresohuimpyrmid,ttyingevuymirdcrf(mnhmsladonalposiﬁmh,
both directi rotation is esti ‘ltthesametimc.ﬁnermatclﬂngisdoncnhigherresoluﬁonlevelsfmafewbestm{-
didate positions. ;

'

The matching process involves transforming the model coordinates to different geometrically distorted positions wiﬂ(
respect to the distance image. The practical case with mleepmmnew-s.nn_aﬁonnndx-‘l translation, is analysed in the

references. Those values of the distance image that are add the d model i are picked up
lated. The 1 -'sumisp:q)ortionalwﬂw‘:vemge’diamceoflhemodelﬁomﬂw‘cmrect‘posiﬁm
the metrics used in the di form. This is a classical multidi jonal optimisation problem where the dista
image values form the cost functi The reduction in ,'aﬁmdloadovaﬂ\emdiﬁonalwnphwmmlﬁnu
(where the cross lation function is calculated b the model and the scene) is obvious since only additions s
needed. Viitanen (1987, 1988) shows how the explicit polar coordinate fe can be avoided in the geometril
forms. Furth the local converg ies of the di image are good allowing several levels of

hietmhicalmmmionofﬂwimasedmwb:n;ed.Thisredwesmcamoumofdammdﬂwpmeessingnme onsidéey
ably.

He.mwewﬂlimpmvethespeedofﬂmeﬁmeconsumingdisminmgecalculaﬁonand matching parts of the algori
using CLCA acceleration. In (Viitanen 1988) the measured execution times on a sequential processor were 1.7 seconds g}
calculating the distance image, and 10 to 20 ds/model for hing agai a256by256image,withamximum

35¢

coordinate points in the model. For practical use in robotics, the processing times should be a few hundred milliseconds.
& will show how to achieve this performance using CLCA's, The next section describes the calculations which must be

1. The Distance Transform Calculation

34 integer distance approximation is applied in the calculation of the di form (DT) used for creating the dis-
lance image. The approximation has small errors compared to the truc Euclidean distance but is sufficiently accurate for

ical use. The calculation of the distance transform involves two passes over the binary edge image, using the method of
gefors (1986). The calculation in the first i ion is done as follows. Let F(x,y) be the two-dimensional discrete image
1y with row index x and column index y, where F(x,y) = 0 at valid feature points and maximum otherwise, then the
toresponding distance image value for each array position in the first iteration is:

x¥)=min{ b(x,y), G(x-1,y)+3, G(x,y-1}+3, G(x-1L,y-1}+4, G(x+1y-1+4 } (1)

here processing is done row-by-row, in increasing x and y values. The second iteration is similar, expect that now the
*m image F(x,y) is the result of the first iteration, decreasing index values are used, and the signs of the index offsets
ahove are negated. Because of the addition, a new search for the minimum has to be done among all the five pixels every
e the mask is moved in the image. This makes the distance transform calculation fairly slow on a sequential computer.

block diagram of the hardware to compute the 3-4 DT is shown in figure 2. It contains five registers in two groups
ing to the two mask rows, The outputs of the registers are fed to adders which add the correct offsets. The most
important part of the circuit is the parallel comparitor section which selects the minimum of the five elements in one asyn-

— 5 bit register 4 n

10t8
Jminimum seloct out
e
5 bit register
Fig. 2: The CLCA configuration for calculating the di image.
1 The LCA Implementation.
structure of the comparitor part of the circuit in figure 2 is shown in figure 3. It p in parallel ¢ P g bits

five pixels (marked by A ... E) with five bit accuracy. The result of the comparison ripples down from the MSB 10 the
, and the result is used to select the first paxel with the smallest value (several pixels may have this value). The circuit
s approximately constant time for the comparison from a certain bit significance level regardiess of the difference. We
d also have used faster lookahead to get a lower time for those comparisons where the minimum value could be dewp
d at a high bit position but, since the host processor reads the results synch ly, the time apy h was
. This unit consists of 84 gates, or the equivalent functional pans, in the LCA,

360

P
| i I [1 111

To next (less significant) stage

Fig. 3: One bit-slice of the parallel comparitor logic configuration.

Figm4shwsﬂnﬂmtmdﬂwmaﬁnxdﬂwdiﬂuwtﬁmcﬁaﬂmmdwﬂhﬂﬁscmﬁmﬁmmm-
luuvalhbchCAwhh“conﬁgmbbbgicneﬂlmused:uwemne.mlymmecdkwmhﬁunnudmdmm
imcnpacityofdledevieewasfnﬂyuwdummypodﬁon&hnmﬂkcdhuﬂwedg&nofdwhywlmmgmmnm
I/O blocks; a0...a4 and c0...c] are the input terminals, and SO...SE4 output terminals, giving the selocted minimum pixel
vnluc.E-chbgiccellhasdwmpmnﬂehﬂ.“wﬂ.andlowudde,mdmmnpmsudwﬁgmm Clock is marked by
‘ck’. Switching units are located in between the logic cells.

1 Ll]
.:gé__“ ‘=Léﬂ£ g
B g
i plEuriy

|

[}

1
Loiall o
i

]

L o
i ITJ E] &
0 C B]
I mem HE dew b —mm of]

Fl..4:IhemndngandplaoemntofmeICA'slogiccdlsofdleomﬁgmwminFix.l

ot T

361

The total delay through the comparitor is not a linear function of the equivalent gate delays along the signal path, because
the LCA evaluates all Boolean functions up to four variables at the same speed; the performance of the circuit was
estimated using the simulator supplied by the manufacturer. It gave a maximum value of 250 ns for the selection of the
- minimum from the worst case MSB transition. The maximum delay for one configurable logic block was 10 ns for the
~mode] used,

st
%

[

N

Fig. 5: The CAL design for the Distance Transform Unit.

1.2, The CAL Implementation.
Figure 5 shows a ‘typical” bit slice through the CAL implementation of the comparitor. This design is different from the
LCA one in that all the major units are integrated into a single regular structure. The adders are at the far left and right of
e central Jogic. Half adders are used since we only need to add constants - when we want 10 add 1 at the current bit posi-
tion we would use XNOR and OR instead of XOR and AND 10 gencrate SUM and CARRY to the next stage. Each adder
Jooks like a 2x2 square with a master/slave register on the bottom and the SUM (XOR) and CARRY (AND) gates on the
The registers are clocked by one of the global signals (G1). Carry routing goes from bottom to 1op on the left and right.

A.JsE up, pA...pE correspond 1o ‘possibly’ A through E and “isA..isE’ 10 definitely A through E (after all bit positions
been compared). The *iSA...isE’ signals are ANDed with A...E and OR’ed (in the centre and far right of the design) to
&mas:l selector and produce the result at this bit position (marked (RES)). The right hand side of the central area is less
gular since it takes advantage of extra vertical space arising from only having two adders to save an exira column of cells,

e selectors and mimimum detectors are impl d in the d area, 5 signals pA...pE go down the unit, and another

Ye design is 14x7=98 cells, a complete comparitor would require 5 of these units. At the base {1.SB) of the unit an extra
of cells is used 1o invert the ‘pA..pE’ signals and connect them directly to the *isA...isE signals. Potentially more than

'is’ signal can be high - this does not matter because the numbers corresponding o the high ‘is® signals are equal so the
leclor will still give the correctresull. At the top of the unit 3 rows of cells are used o connect the overflow signals from
e adders 1o the corresponding ‘p* signals in the MSB: this prevents pixels where the addition has overflowed from being
tkcled as the minimum. The case in which all the additions overflow is also detected and the ‘ovf® signal set which forces
result outputs to 1 {corresponding 1o the maximum legal value). The extra routing area could be avoided if special lay-
were done for the MSB and LSB slices but this method produces a more regular design. The whole unit requires 546

best way to compare this figure with the LCA is in terms of control store required since this will cancel out differences
processing technology and die size. The LCA array has 12038 bits of configuration RAM. At 20 bits of RAM per CAL
this represents 601 CAL cells. This shows that the impl ions are almost equivalent in terms of ‘area’ efficiency
despise the large numbers of relatively high fan-in gates in the design. It must be noted that the LCA design has been fiued
single chip where the CAL design is an arbitrary shaped rectangle of cells. This is representative of the different ways

wo systems are intended to be used. CAL designs will normally be done in a large array built up from several chips and

¥ comparitor would represent only a small part of the total system whereas LCA arrays are intended for relatively small

362

designs which fit on a single chip. At present there are no facilities for accurately simulating the delays in a CAL design,
h , rough calculations based on circuit simulations and measurements on the prototype chip suggest that the speed in
this example would be of the same order.

The CAL design is much more regular than the LCA design and was produced faster (about 2 days versus 1 week) despite
the fact that it was done as a hand layout whereas the LCA design used automatic routing tools and a good graphical editor.
Most of the time in the LCA design was spent in manual editing of the ing since the quickly exh the
routing resources in a design of this complexity leaving signals unrouted. Overall, the speed of design and its regularity
coupled with the slight arca advaniage vindicate the ‘keep-it-simple’ philosophy of the CAL system.

3.1.3. Comparison with Conventional Pr :
The corresponding operations on a TMS 32010 signal processor take from 29 to 37 instruction cycles of 200 ns, so the

speedup factor is from 23 to 30, compared o the LCA implementation. The I/O overhcad has 10 be added to both cases,
depending on the actual implementation, so the total time for building the complete 256 by 256 distance image can be
estimated to be about 64 milliseconds using a fast host CPU with a 120 ns /O cycle time. The TMS 32010 sequential

implementation took more than a second.

There are about 239 gate equivalents in the CLCA impl ion, this ber of additional gates would be nceded in the \,
ALU of a g I p or 1o impl the same “instruction’. No general purpose processor would be given this amount
of additional gates for such a special purpose - even without the trend towards RISC computers! With ‘rcusable’
reconfigurable arrays the special circuitry becomes feasible.

3.2. The Matching Process

The matching process utilises knowledge from both the model and the distance image. A window of the size of the model
(or a part of it} is processed each time at every candidate position x,y of the distance image. In (Viitancn 1988) an algorithm
is described that gives an estimate for the best matching rotational angle, as well as a measure of the fidelity of the maich al
that ranslational position using the best matching angle. ?

The maiching is based on the following formulation: we denote by F (our x,y) the distance image, and by G{B.h) the
model to be matched, both in polar coordinates. & and B are the angles with respect 10 the x axis, and r and h are the dis:
1ances from the origin of the window where the calculation is carried out; x and y are the rectangular coordinates of the ofi-
gin of the window on the scene. Both are discrete two- dimensional arrays. G() is a binary image with ONE's at the valid
model feature points and zeros otherwise.

The estimation involves calcutation of the following summation:

N 2
Auxy)= 3 T Fla-prm)h()x,y)GBnmynn) 2)
n=1m=1
where N steps are taken over the valid (discrete) radial distance, and 2 model points are used in the calculation at dim

The angle & that corresponds 1o the minimum value of A is taken as the best orientation of the model at position (x.y).
the minimum value itself is proportional to the average di from the esti d correct position. ;

Figure 6 shows the block diagram of the CLCA in the confi jon for calculating (2). Besides the logic cell array,
memories are noeded. The first is used for storing the angle difference values of the steps along the 3-4 equal distance cirle
for every distance value of the polar coordinate representation. The second memory is used for storing the accumulated
tance image values A()} with the angle value as an address. The “angle offset” register holds the model angle value ar
distance. The minimum of A() and the corresponding angle are continuously updated and output as results of the ¢ culs
tion. As we can see from this example a computer design using CLCA’s would benefit from some dual-port men
addressable by both the CLCA and the host for fast h of scalars, and tables. :

A carefully optimised assembly language loop for this calculation took 30 cycles of 200ns on a TMS32010 signal pro
giving a total time of 6000 ns. The critical part of the CLCA impl ion which d ines the speed of the maicl
the loop that is formed by the 8 bit address counter, the RAM, the 5 bit adder, and the 5 bit latch. The 70 MHz ver
the 64 cell LCA was uscd. The adder speed suffered from the slow carry 1ookahead possible on the LCA, so the wors!,
propagation delay from LSB in to sum out was 41 ns. We must also include the RAM update time of about 25 ng
imum from an address change using a fast device, the O laich and direct input delays of 20 ns maximum, and the 2
counter output delay at 10 ns. Adding a small safety margin, the total update time would be 100 ns. This gives.
speedup factor for this example of about 60.

363

angle
difference
address —
we PROM
4 bit data
5 bit radial clock
distance val
S fSvictaen | [Cevitar | | [bittawcn |
) ol peser | next value request
8 bit angle offset
D enable
S bit distance
Jmagevalue | TSUit laweh
clock

13 bit daia 3 bit min. [
I || duta
[5bitcor:p. - [svicar. | | scder] gistance
= 'a‘c“(?f:tulamr
S bit laich RAM
data
address

Fig. 6: The CLCA Configuration for the Matching Operation.

33, The Complete HCMA Calculation

We will now consider the total time for the whole operation rather than just the inner loop computation. In a typical casc we
ight have the following time for performing a compl hing operation on one model, eg. for finding the best fitting
location and the angle of rotation for the model in the image. We would use a three level pyramid, with dimensions 256 by
256, 128 by 128, and 64 by 64 at cach level. The model has a size 63 by 63, with 40 valid model points, maximum of two
poinis at each radial distance, and 24 radial steps at the lowest level, 12 at the next, and 6 at the highest pyramid level. At
highest pyramid level we would examine every third translational location, for a total trial count of 256. At the next
lower levels we examine a maximum of 16 best candidate positions, and their 8 closest neighbors, and at the lowest level 4
didates and the neighbors. So the total time at the highest level would be 100*256*2%6*256 nis = 78.6 ms. At the next
vel the corresponding figures are: 100*256%2*12*16*9 ns = 88.5 ms, and at the lowest level: 100%256%2%20%4%9 s =
9 ms. The total time would thus be 204 milliseconds for one model. These times for the HCMA calculation are quite
sufficient for use in robotics.

THE CLCA APPLICATION DEVELOPMENT PROCESS

this section we will discuss the feasibility of imp ing ‘active’ ¢« for conventional high level languages
¥hich generate configuration data for CLCA’s rather than normal machine instructions. These compilers are termed active
Tecause the computation is done by active computing elements (logic gates) rather than by a separate unit interpreting a
sive byte stream.

Historically, many research projects have been carried out into behavioural ilation for logue part and silicon
igns, notably the work at Camegie Mellon University on the CMU-DA system and related projects (Thomas 1983).
Mﬁy, a highly developed system has been produced at IBM Yorktown Heights (Brayton 1986). This system features
novel multi-level logic synthesis techniques and is probably the most fully engineered behavioural system available, We
model our discussion after the IBM compiler and another interesting system reported by Peng (1987), This uses Pascal
the behavioural description language and an asynchronous control strategy. The i grated develop Y is called
'AMAD. CAMAD includes a data flow analyser that extracts the parts of the program executable in parallel.

364

The h 1 is realised as an ETPN (Extended Timed Petri Net) and the impl i mergesthc
dnumampuladonmddwconuolmmmmdwﬂnalmhsanmonsﬂm CAMAD synth the
ﬂmmnmtheguardsofﬂwopemuonsandhaseonmlovertheﬁmﬂmalm
(amwughPulgdoesnotexphcmy limit the model to consist of only one microcode engine and refers to other methods of
control realisation). mshndofcmummdmmomommwnMunMMnmtemdmwaywndmﬂwpipehmm
lelism that is present in many image p i A more distributed 1 strategy is di d by the simple
stmcmonlwplequLCAmodels,nwyhavebgwceusmatueusﬂymabbfotdxm’buwdconml but a centralised
microprogram store would spend too many of the available routing facilities going to and from the operational units, Pro-
pagation delay on long control lines would also be a significant problem.

F)gure?lllusuammepmposedCLCAptognmdevelopmuwmfrunlnghlcvellxngmgcsomcewconﬁmm
information. This diagram is typical of most silicon behavi lation sy and is modelled after Peng (1987).
Theprooessisna'mallysplitmwtwopms.mmeﬁmpanﬂwbehaviomaquxmunomsconvemdmmnmunlme
(e.g. a hierarchical nelist of gates) and in the second (sometimes termed silicon assembly) the structural representation is
converted into physical layout. Tools for the second phase are fairly well understood so we will concentrate on the
behavioural compilation step and take cach component of the diagram in turn.

The use of a standard HLL as source is important in the hardware configuration we have in mind of a fast general purpose
CPU (e.g. RISC or bit slice processor) and the CLCA as a cop! which obtains its confi ion data via the host
CPU. The ‘active’ compllawouldlhendecxdewhlchpamofmempammnmmﬁnCLEAmdwhwhmnmmdw
host by considering the execution times of both processors (taking into account CL.CA configuration loading time). With
present technology, only loops or parts of loops that have high enough repetition counts (say over a few hundred) would be
considered for running on the CLCA coprocessor. There are many tradeoffs 10 be made in this part of the process: while
fully automatic compilation from a language like C or PASCAL is desirable from the point of view of ease of use it can
never take advantage of the full power of the CLCA. This is because the specification of the computation to be performed
using a language like C is overly constrained. An obvious example of this is that a problem which only requires 5 bit proci-
sion may be coded to work on 32 bit integers in C: the ‘active’ compiler has no way of telling from the source code that the
extra 27 bits are redundant. This problem occurs in more subtle forms as well: for example, a C programmer might specify
a quicksort algorithm where a hardwarc implementation would be faster vsing a distributed bubblesort. It is sometimes
i ible for the progr to write efficient code without knowing which processor it will run on. For these reasons
m&wdmﬂmnﬂmwmmﬁmmwmpbumedmmem;MmMmm
specification languages may be desirable.

Behavioural compilation

l

cell assembly

|

%
Mﬂm

Fig. 7: The proposed CLCA development process

365

Inorder to obtain reasonably efficient hardware realisations it is ofien necessary that many operations in the data-Row graph
be performed by a single physical unit. There are two steps in figure 7, where this merging of operation can be done. The
first comes, when the sequential program is transformed to the ETPN description. This utilises the control structure of the
Petri net and compresses the straight line sections of the program with no external data dependencies to single operational
units. The second merging siep comes with the Boolean minimisation. Here, additi by a constant and similar ALU-only
operations can be merged with the following operation. Programmable logic circuitry handles several variables at a time
providing another useful speedup over traditional processors. A third merging phase may also be desirable where multiple
units with data-dependancies are merged. Naturally, this reduces the amount of parallelism p and px ially reduces
speed but it can also drasticaily cut down the amount of hardware in the implementation and the more compact unit could
well be faster because of reduced routing delay. This merging phase can be done by manual intervention (perhaps using
phical tools 10 ipulate the ETPN)) or automatically using ‘expert’ systems or other heuristic techniques,

Our example of searching for the minimum of five words afier adding a constant to each one is a good illustration of these
optimisations. Several comparison operations can be formed into a single Boolean expression over all the five input words.
The expression can be optimised at compilation time and the resulting logic function can be assigned to CLCA cells. The
efficient automatic realisation of such Boolean expressions has only recently become feasible with advances in multi-level
logic synthesis techniques (Brayton 1986). A sequential program for this operation would take at most two words at a time
for processing, and consume several cycles for each suboperation. A parallel processor implementation would distribute
partial comparisons to different processors and thus introduce a major communication overhead.

Alter the optimisation of the Boolcan expression, we have a complete structural description of the design in terms of a net-

list of logical units capable of being implemented by the primitive cells in the target array. ‘The next steps in the process
- could be termed cell-assembly and consist of floorplanning, global ing and local pl. and routing of functional
. eells. Floorplanning and global routing are high level processes applied to large hierachical structures (e.g. our five way
- comparitor) within the structural description. Given this high level plan detailed placement and routing within the large sub-
-sructures and channel routing 1o connect them up into the final design is also required. Usually, heavy computation is
- ‘needed in automatic placement and routing - techniques such as simulated ling are often used in the floorplanning step
wensure good results. Good placement of the computational units is very important since excessive delays will result from
long wires. Minimising the computation involved is important in a system like ours where frequent recompilations will
oceur as the program is developed. It is at this point that the advantages of the CAL architecture become apparent:

- 1. The architecture scales transparently over chip boundaries. Realistic size systems will never fit on a single programmable

¢hip given the overhead of the configuration memory thus it is essential that multi-chip systems be supported. Architectures
- which use *special-purpose’ input-output blocks are unsuitable for large systems since single units (for example large logic
blocks) in user designs will be hard o split over multiple chips.

2. The architecture is completely symmetrical: this is important when floorplanning large systems since it allows large
- subunits 10 be rotated and reflected 1o oblain a dense packing. Algorithms for floorplanning silicon designs take advantage
of this flexibility.

3. There is a single resource in the system. Large units are built up by composing small resources rather than breaking up
large ones. One area where this is particularly important is channel routing. In a large design channels with as many as 20
tracks are likely to oceur: in the CAL archi there is ially no limit to the number of tracks in a channel, although
sach additional track may require an additional line of cells (often two tracks can be fitied in a single line of cells). In an

. ahitecture such as the LCA with special fixed width wiring channel resources problems occur when that width is
exhausted; possibly resulting in routing failure or grossly inefficient use of resources.

4, The routing modecl is simple and safe, Routing in a CAL design is easy, although potentially quite slow: there is only one
. ~¢lass of routing resource so there is no question about which is the most suitable for a given signal. All paths are fully
buffered so there is no need to worry about logic levels, These factors are important because they allow the use of standard
‘channel routing” algorithms which can produce high quality routing relatively quickly.

More complex architectures can still be routed automatically using ‘maze’ routers but the results are likely to be worse and
‘somputation time significantly longer.

Atits present stage of development the CAD twols for the CAL system are fairly primitive because of the limited manpower
available for their development: channel routing, logic synthesis and tools to support manual design have been written. It is
imtended that support for CAL should eventually be integrated into an existing silicon compiler since many existing pro-
. grams for functions like floorplanning, global routing and structural language input could be used unchanged. Thus designs
eould proceed from a single source format into cither a silicon or a configurable logic impl ion. This capability is
imporant since one of the target application areas for CAL’s is in Application Specific IC prototyping (Kean 1989).

366

The tools that are available for application development with the commercial LCA families consist of a logic cell editor, a
macro library, a simulator, an antorouter and an autoplacement utility. At present design using these tools normally requires
manual intervention to solve routing problems so they are not really suitable for use as a ‘cell assembler® back end to an
active compiler.

S. DISCUSSION: FUTURE GATE-LEVEL DYNAMICALLY RECONFIGURABLE PROCESSORS

The techniques dis: d in the last ion can provide significant speedups in many operati h , 1o take advan-
tageofthunsigmﬂcamwukwﬂlbemqunedunbolhﬂwacnve pil and the arch of the CLCA’s. New
ges closer to h delmphonlmguamm&yalsobewquedmmaheﬁﬂluseofm

cmﬂgmblemncmre.Inﬂlecmthofself-unwdconmlsancnnesmcofaneandedfmnofOOCAMwithwomlengm
specification for operations is worth idering, especially if a P is used as the host computer.

The CLCA has four main speed advantages over normal processors:

1. There is no instruction fetch or instruction decode. In a CLCA the ‘i jon’ is the confi ion infc ion and it is
ﬁxedbefmproceaslngmmspovideaacmsdenucspeedadvmmnﬂwexpmseoﬁeqmugmmhmmm
ing hardware - if two operations need to be performed then in effect we have two ALU's rather than time sharing the same
one. Naturally, this poses a severe limitation on the complexity of the code which can be implemented on CLCA's. Small
sequences of ‘inner-loop’ instructions extracted from HLL programs or simple calculations performed in systolic aigo-
rithms are attractive for CLCA implementation.

2. The hardware performs exactly the calculation required. In most p ion cycles are synchronised to a
clock set for a ‘worst-case’ instruction (e.g. carry propagation in a 32 bit adder), |naCl£Ammp1ewmpumﬁonsmkemly
afewgnle(klays.'misllexibihtyextmdsIomewlddlofmeopeuﬁonmdmenmnberofopermdsuwd.onenmml
‘ALU’ operations can be merged into one lex B and i d directly in the CLCA. In a systolic
algmﬂ\mmplqnmwdmnﬁxedmCLCAanmesmconmnbeusedeﬂ‘ecnvely - if the computation requires relatively
few cells then more Processing Elements (PE’s) can be implemented on the array. Compare this with a conventional paral-
lel computer where the number of PE’s is fixed in advance.

3. Pnpclmmg In many of the inner-loop and systolic computations performed by CLCA'’s pipelining can be implemented
very lly. This is especially effective on the CAL archi where p gi use only a single small cell and
canoﬁmmakeuseofﬁmumnmumcdlswhwhwmﬂdmh«wxsebeused)ustﬁormuung Pipelining can often make up
for the slow propagation delays llongthe g i Reconﬁgunblc pipelines have difficulty in making
efficient use of fixed ional units, b the different tasks impl d may require different along the
pipeline. Solutions like sharing of operational units or adding non-compute delays have not been found to be effective
(Hwang 1984). CLCA's can solve these problems by building the resources on demand.

4. Routing Flexibility. Many calculauons involve mampnhums which can be accomplished by wiring rather than active i

circuitry. Examples are swapping registers, ng bit fields and manipulating masks. Most conventional processors per-
imntheseopemmexmelymemmmﬂybecauseofﬂwubngwadlﬂmhs Often a problem specific ing

can elimi alarge of redundant computation.

5. The adv of as g have been pointed out in recent works on VLSI design, for instance by Peng !
(l987),cmplmnglhnthe;loblemsmlaxgesynchmmsVLSldesmmthhrgeclockskewsmhmltd\enmm‘
clockﬁequmcycanbesolvedmng y str igned for asynch P ing i
described by Nowak (1987), showi ifi speed i vmhonlylfew ing units. Asynch soff |
timed could be a p _alchoioetomeconmlmlcmofaCLCAcomputer.

The examples given in this paper give hinis of the potential of CLCA'’s to speedup inner loop code. We could program soé-:
tions of 29 to 37 mstmcuomonﬂlesmallm&-celldevwewnmSbntdamobmnmgaspeedupfacuxofﬂw%hou'
case and a speedup factor of 60 in the another over a reasonably powerful microprocessor.

For wider use, at least 16 bit processing, and loops with more operations will be needed ’I‘helargestavailableLCAhtlv
roughly ten times the capacity of the device used in this paper so the extension in the wordlength can be achieved
use of bit-serial arithmetic may be preferable to having wide arithmetic units because of routing delays in carry chains. CAY,;
can take this even further by allowing a board full of configurable devices o be used allowing implementation of largy
Y Slow prog ing will always be a probl, Ithough the bottl k can be d to move from the CLCAW)

367

most suitable for prog: which require large numbers of repetitive operations so that the configuration data can stay con-
stant for long periods.

Two other examples of the application of CAL to carefully chosen problems in (Kean 1989, Gray 1989) are also worth
mentioning. In the first a DES encrypior is built from a large (about 8000 cells) CAL array, this computation is inherently
bitlevel and very amenable 1o pipelining. Using a ten stage pipeline within the critical f-box section of the DES algorithm a
performance of 500,000 encryptions per second can be obiained. This is as fast as the best DES custom chips (Ver-
bauwhede 1988): optimised DES software running on conventional processors is about 1000 times slower (mainly because
the bit scrambling done using wiring channels in the hardware versions is very hard to implement efficiently on a conven-
tional processor). In the second example CAL is used to provide the computation in a cellular-automaton model for fluid
fow simulation (Salem 1986). Using a system with 26 large 64x64 cell CAL arrays providing 128 pipelined update proces-
~ sors supported by a large dynamic RAM memory w keep the computation unit supplied with data performance of the same
order as a Connection Machine multiprocessor, reported by Wayner (1988), is predicted. These figures give an indication
of the raw power of the configurable logic approach in appropriate problem domains. The DES design required careful
wanual layout and the fluid-flow design requires a special purp memory sy 10 supply the data quickly enough so
this kind of performance is not to be expected from the system described here.

6 CONCLUSIONS AND FUTURE WORK

The application areas of CLCA's are obviously those, where relatively simple operations are performed over large data sets.
. These kinds of task arc found in image processing, computer graphics, statistical simulation and finite el methods.
With appropriate compiler technology we would hope to obtain speed-up factors of roughly 20 times using fairly small

+ CLCA arrays with normal procedural programming languages. With a large manual design effort on a particular problem
- ‘much greater speedups are achievable.

More work is needed in future on the development of better tools for ic confi ion program ion and new

 ad better structures for the configurable logic cell arrays. Better methods of expressing the newly available forms of paral-
 klism are also needed in the source languages.

T.REFERENCES

Algotronix (1988) CAL 1024 Preliminary Data Sheet, Edinburgh UK, 1988.

Borgefors G (1986) On Hicrarchical Edge Maiching in Digital Images Using Distance Transformations, dissertation
TRITA-NA-8602, The Royal Institute of Technology, Stockholm, Sweden 1986, (To appear in IEEE PAMI)

Bmyton RK, Camposano R, DeMicheli G, Otten RHIM, van Eijndhoven J (1986) The Yorktown Silicon Compiler
Sysiem, Technical Report RC12500, IBM T.J. Watson Research Centre, Yorktown Heights.

Davis R, Thomas D (1984) Systolic array chip matches the pace of high-speed processing. Electronic Design,
October 31, 1984, pp. 207 - 218.

Fountain TJ (1983) The development of the CLIP7 image processing system, Pattern Recognition Letters 1
. 331 - 339, North-Holland.

Gy JP, and Kean TA (1989), Configurable Hardware: A New Paradigm for Computation, to appear in
“Proc. D ial Caltech Conf e on VLSI, (1989).

mWD (1985) The Connection Machine, MIT Press, Cambridge, Mass., U.S.A.

‘Hwang K, and Briggs FA (1984) Computer architecture and parallel processing, McGraw-Hill, New York, U.S.A.
28..212.

T (1989) Configurable Logic: A Dy ically Prog ble Cellular Archi and its VLSI Implementation,
P4D Thesis, University of Edinburgh, Dept. of Computer Science.

L (1987) SAMP: A General Purpose Processor Based on a self-Timed VLIW Structure, Proc. 1987 Conference
Architectural Support for Programming Languages, pp. 32-39.

368

Peng Z (1987) A F 1 Methodology for A d Synthesis of VLSI Sy Link 1g Studies in Science
and Technology, Dissertation No 170, Dept. of Compuwund Information Science, Lmkopmx University,
S-58183 Linkoping, Sweden.

Salem JB, Wolfram S (1986) Thermodynamics and Hydrodynamics with Cellular Automata. Theory and Applications
of Cellular Automata, Paper 3.10, pp 362--365. World Scientific Publishing Co., Singapore.

Sternberg SR (1985) Computer archi ialised for math I morphology, in " Algorithmically
Specialized Parallel Computers®, ed. by L. Snydu et al. Academic Press, pp. 169 - 176.

Thomas D, Hitchcock ITI C, Kowalski T, Rajan J, Walker R (1983) A ic Data Path Synthesis, [EEE
Computer, December, pp. 59 - 79.

rb hede 1, H t F, Vandewalle J (1988) Security and Performance Optimisation of a new DES Data Encryption
CInp IEEE Journal of Solid State Circuits, Vol 23, pp 647656, June 1988.

Viitanen J, Hanninen P, Saarela R, Saarinen J (1987)Hmchx:alpnm mamhmgwnhaneﬁcwmmhodfot
estimating rotations. Proc. of the IEEE Industrial El i y IECON’87, Cambridge,
Massachusetts, U.S.A. 3-6 November.

Viitanen J, Hanninen P, Saarela R, Saarinen J (1988) An Efficient Method for Image Pattern Matching, Proc. of
The Intemational Conference on Parallel Processing for Computer Vision And Display, Leeds, UK.
12-15 January 1988.

‘Wayner P (1988) Modelling Chaos, Byte, May 1988, pp. 253 - 258.

Xilinx (1986) The Programmable Gate Array Design Handbook, Xilinx Inc. U.S.A.
1986.

Jouko O. Viitanen

‘Was bomn in Orivesi, Finland, on October 13, 1954. He received the M.S. degree
in electronics in 1978, and the Lic.Tech. degroe in computer science in 1984 from
Tampere University of Technology. He is currently a Senior Researcher at the
Research Institute for Information Technology, Tampere University of Technol-
ogy. His research intcrests are image processing, image processor and computer
architecture.

Tom Kean has recently completed his Doctoral thesis within the
Computer Science Department of Edinburgh University. ‘
His research interests are in dynamically programmable logic arrays,
VLSI design and silicon compilation. He received the BSc degree in
computer science with first class h rs from Edi gh University
in 1985.

Present address:
SARI Project,
Department of Electrical Enginnering,
University. of Edinburgh,
The King’s Buildings,
Mayfield Road,
Edinburgh, UK.

R.A. Earnshaw, B. Wyvill (Eds.)

New Advances in
Computer Graphics

Proceedings of CG International *89

With 375 Figures Including 126 in Colour

Springer-Verlag
Tokyo Berlin Heidelberg New York London Paris

